资源简介 鲁教版(五四学制)七年级数学下册《 角平分线》自主提升训练题一.选择题1.如图,点P是∠AOB的角平分线OC上一点,PN⊥OB于点N,点M是线段ON上一点.已知OM=3,ON=5,点D为OA上一点若满足PD=PM,则OD的长度为( )A.3 B.5 C.5或7 D.3或72.如图,已知△ABC的周长是16,MB和MC分别平分∠ABC和∠ACB,过点M作BC的垂线交BC于点D,且MD=4,则△ABC的面积是( )A.64 B.48 C.32 D.423.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,若AC=3,BC=4,则S△ABD:S△ACD为( )A.5:4 B.5:3 C.4:3 D.3:44.如图,在△ABC中,∠B=45°,∠C=75°,AD平分∠BAC,交BC于点D,DE⊥AC,垂足为E,若DE=2,则AB的长为( )A.6 B.+4 C.+2 D.2+25.点P在∠AOB的角平分线上,点P到OA边的距离等于10,点Q是OB边上的任意一点,下列选项正确的是( )A.PQ<10 B.PQ>10 C.PQ≥10 D.PQ≤106.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为( )A.3 B.+ C.+2 D.2+7.如图,△ABC的∠B的外角的平分线BD与∠C的外角的平分线CE相交于点P,若点P到直线AC的距离为4,则点P到直线AB的距离为( )A.4 B.3 C.2 D.18.如图,在四边形ABCD中,∠A=90°,AD=3,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为( )A.1 B.6 C.3 D.129.如图,△ABC中,∠C=90°,∠BAC的角平分线交BC于点D,DE⊥AB于点E.若CD=2,AB=7,则△ABD的面积为( )A.3.5 B.7 C.14 D.2810.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F.若S△ABC=28,DE=4,AB=8,则AC长是( )A.8 B.7 C.6 D.511.如图,Rt△ABC中,∠C=90°,用尺规作图法作出射线AE,AE交BC于点D,CD=2,P为AB上一动点,则PD的最小值为( )A.2 B.3 C.4 D.无法确定12.如图,在△ABC中,∠ABC=60°,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且,则线段BE的长为( )A. B.2 C.3 D.13.如图,在△ABC中,∠B=90°,AB=6,BC=8,AD为∠BAC的角平分线,则三角形ADC的面积为( )A.3 B.10 C.12 D.15二.填空题14.如图,在△ABC中,∠ACB=90°,AD平分∠BAC交BC于点D,CD=3,DB=5,点E在边AB上运动,连接DE,则线段DE长度的最小值为 .15.如图,已知Rt△ABC中,∠C=90°,AC=6,BC=8,点E、F分别是边AC、BC上的动点,且EF∥AB,点C关于EF的对称点D恰好落在△ABC的内角平分线上,则CD长为 .16.如图,四边形ABCD中,AB⊥AD,点E是BC边的中点,DA平分对角线BD与CD边延长线的夹角,若BD=5,CD=7,则AE= .17.如图,在△ABC中∠ABC和∠ACB平分线交于点O,过点O作OD⊥BC于点D,△ABC的周长为21,OD=4,则△ABC的面积是 .18.如图,Rt△ABC中,∠C=90°,∠BAC的角平分线AE与AC的中线BD交于点F,P为CE中点,连接PF,若CP=2,S△BFP=15,则AB的长度为 .19.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N.再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交BC于点D,若CD=5,AB=18,则△ABD的面积是 .20.已知△ABC中,∠ACB=90°.点I为△ABC各内角平分线的交点,过I点作AB的垂线,垂足为H.若BC=6,AC=8,AB=10,则IH= .21.如图,△ABC中,AB=8,BC=10,BD是△ABC的角平分线,DE⊥AB于点E,若DE=4,则三角形ABC的面积为 .三.解答题22.已知:如图,在Rt△ABC中,∠C=90°,D是AC上一点,DE⊥AB于E,且DE=DC.(1)求证:BD平分∠ABC;(2)若∠A=36°,求∠DBC的度数.23.如图,已知BE⊥AC,CF⊥AB,垂足分别为E,F,BE,CF相交于点D,若BD=CD.求证:AD平分∠BAC.24.在△ABC中,点D、E、F分别在BC、AB、AC上,BE=CF,△DEB与△DFC的面积相等.求证:AD平分∠BAC.25.如图,△ABC中,D为BC的中点,DE⊥BC交∠BAC的平分线于E,EF⊥AB,交AB于F,EG⊥AC,交AC的延长线于G,试问:BF与CG的大小如何?证明你的结论.26.如图,在△ABC中,∠ABC和∠ACB的平分线交于点O,∠BAC=α.(1)如图①,若∠A=50°,求∠BOC的度数;(2)如图②,连接OA,求证:OA平分∠BAC;(3)如图③,若OC⊥PC,求∠P的度数.(用含α的式子表示)参考答案一.选择题1.解:如图:过点P作PE⊥OA于点E∵OC平分∠AOB,PE⊥OA,PN⊥OB∴PE=PN∵PE=PN,OP=OP∴△OPE≌△OPN(HL)∴OE=ON=5∵OM=3,ON=5∴MN=2若点D在线段OE上,∵PM=PD,PE=PN∴△PMN≌△PDE(HL)∴DE=MN=2∴OD=OE﹣DE=3若点D在射线EA上,∵PM=PD,PE=PN∴△PMN≌△PDE(HL)∴DE=MN=2∴OD=OE+DE=7故选:D.2.解:连接AM,过M作ME⊥AB于E,MF⊥AC于F,∵MB和MC分别平分∠ABC和∠ACB,MD⊥BC,MD=4,∴ME=MD=4,MF=MD=4,∵△ABC的周长是16,∴AB+BC+AC=16,∴△ABC的面积S=S△AMC+S△BCM+S△ABM==×AC×4++=2(AC+BC+AB)=2×16=32,故选:C.3.解:过D作DF⊥AB于F,∵AD平分∠CAB,∠C=90°(即AC⊥BC),∴DF=CD,设DF=CD=R,在Rt△ABC中,∠C=90°,AC=3,BC=4,由勾股定理得:AB==5,∴S△ABD===R,S△ACD===R,∴S△ABD:S△ACD=(R):(R)=5:3,故选:B.4.解:∵在△ABC中,∠B=45°,∠C=75°,∴∠BAC=180°﹣∠B﹣∠C=60°,过D作DF⊥AB于F,∵AD平分∠BAC,DE⊥AC,DE=2,∴DF=DE=2,∠AFD=∠BFD=90°,∠BAD=∠CAD=BAC=30°,∴AD=2DF=4,∵∠B=45°,∴∠FDB=∠B=45°,∴BF=DF=2,在Rt△AFD中,由勾股定理得:AF===2,∴AB=AF+BF=2+2,故选:D.5.解:过P作PD⊥OB于D,∵PC⊥OA,PD⊥OB,OP平分∠AOB,∴PC=PD,∵点P到OA边的距离等于10,∴PD=PC=10,∴PQ≥10(当Q与点D重合时,PQ=10),故选:C.6.解:如图.过点D作DF⊥AC于F.∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF=1,在Rt△BED中,∵∠BED=90°,∠B=30°,∴BD=2DE=2,在Rt△DFC中,∵∠DFC=90°,∠C=45°,∴CD=DF=,∴BC=BD+CD=2+,故选:D.7.解:如图,过点P作PF⊥AC于F,作PG⊥BC于G,PH⊥AB于H,∵BD、CE是△ABC的外角平分线,∴PF=PG,PG=PH,∴PF=PG=PH,∵点P到AC的距离为4,∴PH=4,即点P到AB的距离为4.故选:A.8.解:过点D作DH⊥BC交BC于点H,如图所示:∵BD⊥CD,∴∠BDC=90°,又∵∠C+∠BDC+∠DBC=180°,∠ADB+∠A+∠ABD=180°∠ADB=∠C,∠A=90°,∴∠ABD=∠CBD,∴BD是∠ABC的角平分线,又∵AD⊥AB,DH⊥BC,∴AD=DH,又∵AD=3,∴DH=3,又∴点D是直线BC外一点,∴当点P在BC上运动时,点P运动到与点H重合时DP最短,其长度为DH长等于3,即DP长的最小值为3.故选:C.9.解:∵△ABC中,∠C=90°,∠BAC的角平分线交BC于点D,DE⊥AB于点E,CD=2,∴DE=CD=2,∵AB=7,∴△ABD的面积是:==7,故选:B.10.解:∵AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F,∴DF=DE=4.又∵S△ABC=S△ABD+S△ACD,AB=8,∴28=×8×4+×AC×4,∴AC=6.故选:C.11.解:当DP⊥AB时,根据垂线段最短可知,此时DP的值最小.由作图可知:AE平分∠BAC,∵DC⊥AC,DP⊥AB,∴DP=CD=2,∴PD的最小值为2,故选:A.12.解:连接BD,如图,∵DE=DF,DE⊥AB,DF⊥BC,∴BD平分∠ABC,∴∠ABD=∠ABC=×60°=30°,在Rt△BDE中,BE=DE=×=3.故选:C.13.解:作DH⊥AC于H,如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,∴AC==10,∵AD为∠BAC的角平分线,∴DB=DH,∵×AB×CD=DH×AC,∴6(8﹣DH)=10DH,解得DH=3,∴S△ADC=×10×3=15.故选:D.二.填空题14.解:当DE⊥AB时,线段DE的长度最小(根据垂线段最短),∵AD平分∠CAB,∠C=90°,DE⊥AB,∴DE=CD,∵CD=3,∴DE=3,即线段DE 的长度的最小值是3,故答案为:3.15.解:过点C作CH⊥AB于H,如图,∵EF∥AB,∴CH⊥EF,∵点D与点C关于EF对称,∴点D在CH上,在Rt△ABC中,AB==10,∵CH AB=AC BC,∴CH==,∴AH==,当点D为∠BAC的平分线AM与CH的交点时,如图1,过点M作MN⊥AB于N,∴MC=MN,∴AN=AC=6,∴BN=4,设MC=MN=x,则BM=8﹣x,在Rt△BMN中,x2+42=(8﹣x)2,解得x=3,∵DH∥MN,∴=,即=,解得HD=,∴CD=﹣=3;当点D为∠ABC的平分线BG与CH的交点时,如图2,BH=AB﹣AH=,过点G作GQ⊥AB于Q,则GQ=GC,∴BQ=BC=8,∴AQ=2,设GQ=GC=t,则AG=6﹣t,在Rt△AGQ中,22+t2=(6﹣t)2,解得t=,∵DH∥GQ,∴DH=,∴CD=﹣=,综上所述,CD的长为3或.故答案为3或.16.解:方法一,如图,取BD中点H,连AH、EH,∵AB⊥AD,∴AH=DH=BH=BD=2.5,∴∠HDA=∠HAD,∵DA平分∠FDB,∴∠FDA=∠HDA,∴∠FDA=∠HAD,∴AH∥DF,∵点E是BC边的中点,点H是BD的中点,∴EH∥CD,EH=CD=3.5,∴A、H、E三点共线,∴AE=AH+EH=2.5+3.5=6.方法二,如图,延长BA和CD交于一点G,证明三角形BDA和三角形GDA全等,得A是BG中点,则AE是中位线,AE等于CG的一半故答案为:6.17.解:作OE⊥AB于E,OF⊥AC于F,连接OA,∵OB是∠ABC的平分线,OD⊥BC,OE⊥AB,∴OE=OD=4,同理OF=OD=4,△ABC的面积=×AB×4+×AC×4+×BC×4=42.故答案为:42.18.解:过E作EG⊥AB于G,连接CF,∵P为CE中点,∵S△EFP=S△CFP,设S△EFP=S△CFP=y,∵BD是AC边上的中线,∴设S△CDF=S△AFD=z,∵S△BFP=15,∴S△BCD=15+y+z,∴S△ABC=2S△BCD=30+2y+2z,∵S△ACE=S△ACF+S△CEF=2y+2z,∴S△ABE=S△ABC﹣S△ACE=30+2y+2z﹣(2y+2z)=30,∵AE是∠CAB的角平分线,∴EG=CE=2CP=4,∴S△ABE=AB EG=30,∴AB=15,故答案为:15.19.解:作DE⊥AB于E,由基本尺规作图可知,AD是△ABC的角平分线,∵∠C=90°,DE⊥AB,∴DE=DC=5,∴△ABD的面积=×AB×DE=×5×18=45,故答案为45.20.解:作IE⊥AC于E,IF⊥BC于F,连接IA、IB、IC,∵I为△ABC各内角平分线的交点,IE⊥AC,IF⊥BC,IH⊥AB,∴IE=IF=IH,则×AB×IH+×AC×IE+×BC×IF=×BC×AC,解得,IH=2,故答案为:221.解:过D作DF⊥BC,∵BD是△ABC的角平分线,DE⊥AB于点E,DE=4,∴DF=4,∴△ABC的面积=△ABD的面积+△DBC的面积=,故答案为:36三.解答题22.(1)证明:∵DC⊥BC,DE⊥AB,DE=DC,∴点D在∠ABC的平分线上,∴BD平分∠ABC.(2)解:∵∠C=90°,∠A=36°,∴∠ABC=54°,∵BD平分∠ABC,∴∠DBC=∠ABD=27°.23.证明:∵BE⊥AC,CF⊥AB,∴∠BFD=∠CED=90°.在△BDF与△CDE中,,∴△BDF≌△CDE(AAS).∴DF=DE,∴AD是∠BAC的平分线.24.证明:作DG⊥AB于G,DH⊥AC于H,∵△DEB与△DFC的面积相等,∴×BE×DG=×FC×DH,又BE=CF,∴DG=DH,又∵DG⊥AB,DH⊥AC,∴AD平分∠BAC.25.解:相等.证明如下:连EB、EC,∵AE是∠BAC的平分线,且EF⊥AB于F,EG⊥AC于G,∴EF=EG.∵ED⊥BC于D,D是BC的中点,∴EB=EC.∴Rt△EFB≌Rt△EGC,∴BF=CG.26.(1)解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣∠A=130°,∵∠ABC和∠ACB的平分线交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=∠ABC+∠ACB=65°,∴∠BOC=180°﹣(∠OBC+∠OCB)=115°;(2)证明:过点O作OD⊥BC,OE⊥AB,OF⊥AC,垂足分别为D,E,F,∵∠ABC和∠ACB的平分线交于点O,OD⊥BC,OE⊥AB,OF⊥AC,∴OD=OE,OD=OF,∴OE=OF,∴OA平分∠BAC;(3)解:∵OC⊥CP,∴∠BOC+∠PCD=90°,∵OC平分∠ACB,∴CP平分∠ACD,∵∠P=∠PCD﹣∠PBC,∵∠PCD=90°﹣∠BCO,∵∠OBC+∠OCB=(180°﹣∠A)=90°﹣α,∴∠PBC=90°﹣α﹣∠OCB,∴∠P=∠PCD﹣∠PBC=90°﹣∠BCO﹣(90°﹣α﹣∠OCB)=α, 展开更多...... 收起↑ 资源预览