资源简介 第四章 §2 2.1两角和与差的余弦公式及其应用一、选择题1.cos(-75°)的值( )A. B.C. D.2.cos(45°-α)cos(α+15°)-sin(45°-α)sin(α+15°)=( )A. B.-C. D.-3.已知锐角θ的终边过点(2,1),则cos=( )A.- B.C.- D.4.已知α为锐角,sin=,则cos α=( )A. B.C. D.5.若sin(π+θ)=-,θ是第二象限角,sin=-,φ是第三象限角,则cos(θ-φ)的值是( )A.- B.C. D.6.若cos αcos β=1,则cos(α+β)=( )A.-1 B.0C.1 D.±17.若α∈[0,2π],sinsin+coscos=0,则α的值为( )A. B.C. D.或8.已知cos(α+β)=m,tan αtan β=2,则cos(α-β)=( )A.-3m B.-C. D.3m9.(多选)满足cos αcos β=-sin αsin β的α,β的值可能是( )A.α=π,β= B.α=,β=C.α=,β= D.α=,β=10.(多选)已知α,β,γ∈,sin α+sin γ=sin β,cos β+cos γ=cos α,则下列说法正确的是( )A.cos(β-α)=B.cos(β-α)=-C.β-α=D.β-α=-二、填空题11.计算:sin 60°+cos 60°=_________.12.cos(61°+2α)cos(31°+2α)+sin(61°+2α)·sin(31°+2α)=_________.13.若cos(α+β)=,cos(α-β)=,则tan αtan β=_________.14.sin(x+y)sin(x-y)+cos(x+y)cos(x-y)=_________.15.在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称.若sin α=,则cos(α-β)=_________.三、解答题16.已知sin=,且<α<,求cos α的值.17.已知α、β∈,sin(α+β)=-,sin=,求cos的值.18.已知A(cos α,sin α),B(cos β,sin β),其中α,β为锐角,且|AB|=.(1)求cos(α-β)的值;(2)若cos α=,求cos β的值.第四章 §2 2.1两角和与差的余弦公式及其应用一、选择题1.C cos(-75°)=cos 75°=cos(45°+30°)=cos 45°·cos 30°-sin 45°sin 30°=.2.A原式=cos[(45°-α)+(α+15°)]=cos 60°=.3.B 根据题意可得sin θ=,cos θ=,故cos=(cos θ-sin θ)=×=.故选B.4.C∵0<α<,∴-<-α<,又sin=>0,∴0<-α<,∴cos==,∴cos α=cos=cos cos+sin sin=cos+sin=×+×=.故选C.5.B ∵sin(π+θ)=-,θ是第二象限角,可解得:sin θ=,cos θ=-=-,又∵sin=-,φ是第三象限角,cos φ=-,sin φ=-=-,∴cos(θ-φ)=cos θcos φ+sin θsin φ=×+×=.6.C因为|cos α|≤1,|cos β|≤1,所以|cos αcos β|≤1,于是或所以sin α=0,sin β=0,所以cos(α+β)=cos αcos β-sin αsin β=1,故选C.7.D因为sinsin+coscos=cos=cos(-α)=cos α=0,α∈[0,2π],所以α=或α=.故选D.8.A 因为cos(α+β)=m,所以cos αcos β-sin αsin β=m,而tan αtan β=2,所以sin αsin β=2cos αcos β,故cos αcos β-2cos αcos β=m,即cos αcos β=-m,从而sin αsin β=-2m,故cos(α-β)=-3m.故选A.9.BC由条件cos αcos β=-sin αsin β得cos αcos β+sin αsin β=,即cos(α-β)=,α=,β=,α=,β=都满足,故选BC.10.AC 由已知,得sin γ=sin β-sin α,cos γ=cos α-cos β.两式分别平方相加,得(sin β-sin α)2+(cos α-cos β)2=1.∴-2cos(β-α)=-1,∴cos(β-α)=,∴A正确,B错误.∵sin γ=sin β-sin α>0,∴β>α,∴β-α=,∴C正确,D错误,故选AC.二、填空题11. 原式=sin 30°sin 60°+cos 30°cos 60°=cos(30°-60°)=cos(-30°)=.12. 原式=cos [(61°+2α)-(31°+2α)]=cos 30°=.13. cos(α+β)=cos αcos β-sin αsin β=,①cos(α-β)=cos αcos β+sin αsin β=,②①×3-②得:2cos αcos β=4sin αsin β,即tan αtan β=.14. cos 2y 原式=cos(x+y)cos(x-y)+sin(x+y)sin(x-y)=cos[(x+y)-(x-y)]=cos 2y.15.- 因为角α与角β均以Ox为始边,终边关于y轴对称,所以sin β=sin α=,cos β=-cos α,所以cos(α-β)=cos αcos β+sin αsin β=-cos2α+sin2α=-(1-sin2α)+sin2α=2sin2α-1=2×2-1=-.三、解答题16. ∵sin=,且<α<,∴<α+<π.∴cos=-=-.∴cos α=cos=coscos+sinsin=-×+×=.17 ∵α、β∈,sin(α+β)=-,sin=,∴α+β∈,β-∈,∴cos(α+β)==,cos=-=-,∴cos=cos=cos(α+β)·cos+sin(α+β)sin=×+×=-.18. (1)由|AB|=,得=,∴2-2(cos αcos β+sin αsin β)=,∴cos(α-β)=.(2)∵cos α=,cos(α-β)=,α,β为锐角,∴sin α=,sin(α-β)=±.当sin(α-β)=时,cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=.当sin(α-β)=-时,cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=0.∵β为锐角,∴cos β=. 展开更多...... 收起↑ 资源预览