【中考押题卷】2025年中考数学高频易错考前冲刺:三角形(含解析)

资源下载
  1. 二一教育资源

【中考押题卷】2025年中考数学高频易错考前冲刺:三角形(含解析)

资源简介

2025年中考数学复习:三角形
一.选择题(共10小题)
1.(2024 民勤县三模)如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于(  )
A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:5
2.(2007 玉溪)如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是(  )
A.50 B.62 C.65 D.68
3.(2018 聊城)如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是(  )
A.γ=2α+β B.γ=α+2β
C.γ=α+β D.γ=180°﹣α﹣β
4.(2024春 南山区期中)如图,在已知的△ABC中,按以下步骤作图:
①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;
②作直线MN交AB于点D,连接CD.
若CD=AC,∠A=50°,则∠ACB的度数为(  )
A.90° B.95° C.100° D.105°
5.(2015 达州)如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为(  )
A.48° B.36° C.30° D.24°
6.(2024 民勤县校级三模)如图,△ABC≌△AED,点E在线段BC上,∠1=40°,则∠AED的度数是(  )
A.70° B.68° C.65° D.60°
7.(2024秋 安溪县期中)如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于(  )
A.150° B.180° C.210° D.225°
8.(2018 黄石)如图,△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=(  )
A.75° B.80° C.85° D.90°
9.(2024秋 含山县校级期中)如图,CD,CE,CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是(  )
A.AB=2BF B.∠ACE∠ACB
C.AE=BE D.CD⊥BE
10.(2015 随州)如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是(  )
A.8 B.9 C.10 D.11
二.填空题(共5小题)
11.(2018 福建)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB,则CD=   .
12.(2015 黄冈)在△ABC中,AB=13cm,AC=20cm,BC边上的高为12cm,则△ABC的面积为    cm2.
13.(2021秋 安仁县校级期末)如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30°,∠2=20°,则∠B=   .
14.(2015 常德)如图,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=   .
15.(2013 烟台)如图,△ABC中,AB=AC,∠BAC=54°,点D为AB中点,且OD⊥AB,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为   度.
三.解答题(共5小题)
16.(2024秋 洛江区期中)已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.
(1)求证:△BAD≌△CAE;
(2)试猜想BD、CE有何特殊位置关系,并证明.
17.(2013 常德)已知两个等腰Rt△ABC,Rt△CEF有公共顶点C,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.
(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;
(2)如图1,若CB=a,CE=2a,求BM,ME的长;
(3)如图2,当∠BCE=45°时,求证:BM=ME.
18.(2023秋 娄底期末)如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.
(1)点M、N运动几秒时,M、N两点重合?
(2)点M、N运动几秒时,可得到等边三角形AMN?
(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.
19.(2024秋 辛集市期末)已知:∠MON=40°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O重合),连接AC交射线OE于点D.设∠OAC=x°.
(1)如图1,若AB∥ON,则
①∠ABO的度数是    ;
②当∠BAD=∠ABD时,x=    ;当∠BAD=∠BDA时,x=    .
(2)如图2,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.
20.(2020 锦州模拟)如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1),△ABD不动.
(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC(图2),证明:MB=MC.
(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.
(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.
2025年中考数学复习:三角形
参考答案与试题解析
题号 1 2 3 4 5 6 7 8 9 10
答案 C A A D A A B A C C
一.选择题(共10小题)
1.(2024 民勤县三模)如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于(  )
A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:5
【考点】角平分线的性质.
【专题】数形结合.
【答案】C
【分析】利用角平分线上的一点到角两边的距离相等的性质,可知三个三角形高相等,底分别是20,30,40,所以面积之比就是2:3:4.
【解答】解:过点O作OD⊥AC于D,OE⊥AB于E,OF⊥BC于F,
∵点O是内心,
∴OE=OF=OD,
∴S△ABO:S△BCO:S△CAO AB OE: BC OF: AC OD=AB:BC:AC=2:3:4,
故选:C.
【点评】本题主要考查了角平分线上的一点到两边的距离相等的性质及三角形的面积公式.做题时应用了三个三角形的高是相等的,这点是非常重要的.
2.(2007 玉溪)如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是(  )
A.50 B.62 C.65 D.68
【考点】全等三角形的判定与性质.
【专题】压轴题.
【答案】A
【分析】由AE⊥AB,EF⊥FH,BG⊥AG,可以得到∠EAF=∠ABG,而AE=AB,∠EFA=∠AGB,由此可以证明△EFA≌△ABG,所以AF=BG,AG=EF;
同理证得△BGC≌△DHC,GC=DH,CH=BG.
故FH=FA+AG+GC+CH=3+6+4+3=16,然后利用面积的割补法和面积公式即可求出图形的面积.
【解答】解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH,
∴∠EAB=∠EFA=∠BGA=90°,
∵∠EAF+∠BAG=90°,∠ABG+∠BAG=90°,
∴∠EAF=∠ABG,
在△EFA和△AGB中,

∴△EFA≌△AGB(AAS),
∴AF=BG,AG=EF.
同理证得△BGC≌△CHD得GC=DH,CH=BG.
故FH=FA+AG+GC+CH=3+6+4+3=16
故S(6+4)×16﹣3×4﹣6×3=50.
故选:A.
【点评】本题考查的是全等三角形的判定的相关知识,是中考常见题型.
3.(2018 聊城)如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是(  )
A.γ=2α+β B.γ=α+2β
C.γ=α+β D.γ=180°﹣α﹣β
【考点】三角形的外角性质.
【专题】三角形.
【答案】A
【分析】根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.
【解答】解:由折叠得:∠A=∠A',
∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',
∵∠A=α,∠CEA′=β,∠BDA'=γ,
∴∠BDA'=γ=α+α+β=2α+β,
故选:A.
【点评】本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.
4.(2024春 南山区期中)如图,在已知的△ABC中,按以下步骤作图:
①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;
②作直线MN交AB于点D,连接CD.
若CD=AC,∠A=50°,则∠ACB的度数为(  )
A.90° B.95° C.100° D.105°
【考点】线段垂直平分线的性质;作图—基本作图.
【答案】D
【分析】由CD=AC,∠A=50°,根据等腰三角形的性质,可求得∠ADC的度数,又由题意可得:MN是BC的垂直平分线,根据线段垂直平分线的性质可得:CD=BD,则可求得∠B的度数,继而求得答案.
【解答】解:∵CD=AC,∠A=50°,
∴∠ADC=∠A=50°,
根据题意得:MN是BC的垂直平分线,
∴CD=BD,
∴∠BCD=∠B,
∴∠B∠ADC=25°,
∴∠ACB=180°﹣∠A﹣∠B=105°.
故选:D.
【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.注意垂直平分线上任意一点,到线段两端点的距离相等.
5.(2015 达州)如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为(  )
A.48° B.36° C.30° D.24°
【考点】线段垂直平分线的性质.
【答案】A
【分析】根据角平分线的性质可得∠DBC=∠ABD=24°,然后再计算出∠ACB的度数,再根据线段垂直平分线的性质可得BF=CF,进而可得∠FCB=24°,然后可算出∠ACF的度数.
【解答】解:∵BD平分∠ABC,
∴∠DBC=∠ABD=24°,
∵∠A=60°,
∴∠ACB=180°﹣60°﹣24°×2=72°,
∵BC的中垂线交BC于点E,
∴BF=CF,
∴∠FCB=24°,
∴∠ACF=72°﹣24°=48°,
故选:A.
【点评】此题主要考查了线段垂直平分线的性质,以及三角形内角和定理,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.
6.(2024 民勤县校级三模)如图,△ABC≌△AED,点E在线段BC上,∠1=40°,则∠AED的度数是(  )
A.70° B.68° C.65° D.60°
【考点】全等三角形的性质.
【专题】图形的全等.
【答案】A
【分析】依据△ABC≌△AED,即可得到∠AED=∠B,AE=AB,∠BAC=∠EAD,再根据等腰三角形的性质,即可得到∠B的度数,进而得出∠AED的度数.
【解答】解:∵△ABC≌△AED,
∴∠AED=∠B,AE=AB,∠BAC=∠EAD,
∴∠1=∠BAE=40°,
∵AE=AB,
∴△ABE是等腰三角形,
∴△ABE中,∠B70°,
∴∠AED=70°,
故选:A.
【点评】本题考查的是全等三角形的性质、等腰三角形的性质,掌握全等三角形的对应角相等是解题的关键.
7.(2024秋 安溪县期中)如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于(  )
A.150° B.180° C.210° D.225°
【考点】全等图形.
【专题】压轴题;数形结合.
【答案】B
【分析】根据SAS可证得△ABC≌△EDC,可得出∠BAC=∠DEC,继而可得出答案.
【解答】解:在△ABC与△EDC中,

∴△ABC≌△EDC(SAS),
∴∠BAC=∠1,
∠1+∠2=180°.
故选:B.
【点评】本题考查全等图形的知识,比较简单,解答本题的关键是判断出△ABC≌△EDC.
8.(2018 黄石)如图,△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=(  )
A.75° B.80° C.85° D.90°
【考点】三角形内角和定理.
【专题】三角形.
【答案】A
【分析】依据AD是BC边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根据△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.
【解答】解:∵AD是BC边上的高,∠ABC=60°,
∴∠BAD=30°,
∵∠BAC=50°,AE平分∠BAC,
∴∠BAE=25°,
∴∠DAE=30°﹣25°=5°,
∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,
∴∠EAD+∠ACD=5°+70°=75°,
故选:A.
【点评】本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用.
9.(2024秋 含山县校级期中)如图,CD,CE,CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是(  )
A.AB=2BF B.∠ACE∠ACB
C.AE=BE D.CD⊥BE
【考点】三角形的角平分线、中线和高.
【答案】C
【分析】从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高.
三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线.
三角形一边的中点与此边所对顶点的连线叫做三角形的中线.依此即可求解.
【解答】解:∵CD,CE,CF分别是△ABC的高、角平分线、中线,
∴CD⊥BE,∠ACE∠ACB,AB=2BF,无法确定AE=BE.
故选:C.
【点评】考查了三角形的角平分线、中线和高,根据是熟悉它们的定义和性质.
10.(2015 随州)如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是(  )
A.8 B.9 C.10 D.11
【考点】线段垂直平分线的性质.
【答案】C
【分析】由ED是AB的垂直平分线,可得AD=BD,又由△BDC的周长=DB+BC+CD,即可得△BDC的周长=AD+BC+CD=AC+BC.
【解答】解:设AB的中垂线与AB交于点E,
∵ED是AB的垂直平分线,
∴AD=BD,
∵△BDC的周长=DB+BC+CD,
∴△BDC的周长=AD+BC+CD=AC+BC=6+4=10.
故选:C.
【点评】本题考查了线段垂直平分线的性质,三角形周长的计算,掌握转化思想的应用是解题的关键.
二.填空题(共5小题)
11.(2018 福建)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB,则CD= 1 .
【考点】勾股定理.
【专题】计算题.
【答案】见试题解答内容
【分析】先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.
【解答】解:如图,过点A作AF⊥BC于F,
在Rt△ABC中,∠B=45°,
∴BCAB=2,BF=AFAB=1,
∵两个同样大小的含45°角的三角尺,
∴AD=BC=2,
在Rt△ADF中,根据勾股定理得,DF
∴CD=BF+DF﹣BC=121,
故答案为:1.
【点评】此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.
12.(2015 黄冈)在△ABC中,AB=13cm,AC=20cm,BC边上的高为12cm,则△ABC的面积为  126或66 cm2.
【考点】勾股定理.
【专题】三角形.
【答案】126或66.
【分析】此题分两种情况:∠B为锐角或∠ABC为钝角已知AB、AC的值,利用勾股定理即可求出BC的长,利用三角形的面积公式得结果.
【解答】解:当∠B为锐角时(如图1),
在Rt△ABD中,
BD5(cm),
在Rt△ADC中,
CD16(cm),
∴BC=21,
∴S△ABC21×12=126(cm2);
当∠ABC为钝角时(如图2),
在Rt△ABD中,
BD5(cm),
在Rt△ADC中,
CD16(cm),
∴BC=CD﹣BD=16﹣5=11(cm),
∴S△ABC11×12=66(cm2),
故答案为:126或66.
【点评】本题主要考查了勾股定理和三角形的面积公式,画出图形,分类讨论是解答此题的关键.
13.(2021秋 安仁县校级期末)如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30°,∠2=20°,则∠B= 50° .
【考点】三角形的角平分线、中线和高.
【专题】几何图形问题.
【答案】见试题解答内容
【分析】由AE平分∠BAC,可得角相等,由∠1=30°,∠2=20°,可求得∠EAD的度数,在直角三角形ABD在利用两锐角互余可求得答案.
【解答】解:∵AE平分∠BAC,
∴∠1=∠EAD+∠2,
∴∠EAD=∠1﹣∠2=30°﹣20°=10°,
Rt△ABD中,∠B=90°﹣∠BAD
=90°﹣30°﹣10°=50°.
故答案为50°.
【点评】本题考查了三角形的角平分线、中线和高的相关知识;求得∠EAD=10°是正确解答本题的关键.
14.(2015 常德)如图,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC= 70° .
【考点】三角形内角和定理;三角形的外角性质.
【答案】见试题解答内容
【分析】根据三角形内角和定理、角平分线的定义以及三角形外角定理求得∠DAC∠ACF(∠B+∠B+∠1+∠2);最后在△AEC中利用三角形内角和定理可以求得∠AEC的度数.
【解答】解:∵三角形的外角∠DAC和∠ACF的平分线交于点E,
∴∠EAC∠DAC,∠ECA∠ACF;
又∵∠B=40°(已知),∠B+∠1+∠2=180°(三角形内角和定理),
∴∠DAC∠ACF(∠B+∠2)(∠B+∠1)(∠B+∠B+∠1+∠2)=110°(外角定理),
∴∠AEC=180°﹣(∠DAC∠ACF)=70°.
故答案为:70°.
【点评】此题主要考查了三角形内角和定理以及角平分线的性质,熟练应用角平分线的性质是解题关键.
15.(2013 烟台)如图,△ABC中,AB=AC,∠BAC=54°,点D为AB中点,且OD⊥AB,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为 108 度.
【考点】线段垂直平分线的性质;等腰三角形的性质;翻折变换(折叠问题).
【专题】压轴题.
【答案】见试题解答内容
【分析】连接OB、OC,根据角平分线的定义求出∠BAO,根据等腰三角形两底角相等求出∠ABC,再根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OB,根据等边对等角可得∠ABO=∠BAO,再求出∠OBC,然后判断出点O是△ABC的外心,根据三角形外心的性质可得OB=OC,再根据等边对等角求出∠OCB=∠OBC,根据翻折的性质可得OE=CE,然后根据等边对等角求出∠COE,再利用三角形的内角和定理列式计算即可得解.
【解答】解:法一:如图,连接OB、OC,
∵∠BAC=54°,AO为∠BAC的平分线,
∴∠BAO∠BAC54°=27°,
又∵AB=AC,
∴∠ABC(180°﹣∠BAC)(180°﹣54°)=63°,
∵DO是AB的垂直平分线,
∴OA=OB,
∴∠ABO=∠BAO=27°,
∴∠OBC=∠ABC﹣∠ABO=63°﹣27°=36°,
∵AO为∠BAC的平分线,AB=AC,
∴△AOB≌△AOC(SAS),
∴OB=OC,
∴点O在BC的垂直平分线上,
又∵DO是AB的垂直平分线,
∴点O是△ABC的外心,
∴∠OCB=∠OBC=36°,
∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,
∴OE=CE,
∴∠COE=∠OCB=36°,
在△OCE中,∠OEC=180°﹣∠COE﹣∠OCB=180°﹣36°﹣36°=108°.
法二:证明点O是△ABC的外心,推出∠BOC=108°,根据OB=OC,推出∠OCE=36°可得结论.
故答案为:108.
【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,综合性较强,难度较大,作辅助线,构造出等腰三角形是解题的关键.
三.解答题(共5小题)
16.(2024秋 洛江区期中)已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.
(1)求证:△BAD≌△CAE;
(2)试猜想BD、CE有何特殊位置关系,并证明.
【考点】全等三角形的判定与性质.
【专题】证明题;探究型.
【答案】见试题解答内容
【分析】(1)要证△BAD≌△CAE,现有AB=AC,AD=AE,需它们的夹角∠BAD=∠CAE,而由∠BAC=∠DAE=90°很易证得.
(2)BD、CE有何特殊位置关系,从图形上可看出是垂直关系,可向这方面努力.要证BD⊥CE,需证∠BDE=90°,需证∠ADB+∠ADE=90°可由直角三角形提供.
【解答】(1)证明:∵∠BAC=∠DAE=90°
∴∠BAC+∠CAD=∠DAE+∠CAD
即∠BAD=∠CAE,
在△BAD和△CAE中,

∴△BAD≌△CAE(SAS).
(2)BD、CE特殊位置关系为BD⊥CE.
证明如下:由(1)知△BAD≌△CAE,
∴∠ADB=∠E.
∵∠DAE=90°,
∴∠E+∠ADE=90°.
∴∠ADB+∠ADE=90°.
即∠BDE=90°.
∴BD、CE特殊位置关系为BD⊥CE.
【点评】本题考查了全等三角形的判定和性质;全等问题要注意找条件,有些条件需在图形是仔细观察,认真推敲方可.做题时,有时需要先猜后证.
17.(2013 常德)已知两个等腰Rt△ABC,Rt△CEF有公共顶点C,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.
(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;
(2)如图1,若CB=a,CE=2a,求BM,ME的长;
(3)如图2,当∠BCE=45°时,求证:BM=ME.
【考点】三角形中位线定理;全等三角形的判定与性质;等腰直角三角形.
【专题】压轴题.
【答案】见试题解答内容
【分析】(1)证法一:如答图1a所示,延长AB交CF于点D,证明BM为△ADF的中位线即可;
证法二:如答图1b所示,延长BM交EF于D,根据在同一平面内,垂直于同一直线的两直线互相平行可得AB∥EF,再根据两直线平行,内错角相等可得∠BAM=∠DFM,根据中点定义可得AM=MF,然后利用“角边角”证明△ABM和△FDM全等,再根据全等三角形对应边相等可得AB=DF,然后求出BE=DE,从而得到△BDE是等腰直角三角形,根据等腰直角三角形的性质求出∠EBM=45°,从而得到∠EBM=∠ECF,再根据同位角相等,两直线平行证明MB∥CF即可,
(2)解法一:如答图2a所示,作辅助线,推出BM、ME是两条中位线;
解法二:先求出BE的长,再根据全等三角形对应边相等可得BM=DM,根据等腰三角形三线合一的性质可得EM⊥BD,求出△BEM是等腰直角三角形,根据等腰直角三角形的性质求解即可;
(3)证法一:如答图3a所示,作辅助线,推出BM、ME是两条中位线:BMDF,MEAG;然后证明△ACG≌△DCF,得到DF=AG,从而证明BM=ME;
证法二:如答图3b所示,延长BM交CF于D,连接BE、DE,利用同旁内角互补,两直线平行求出AB∥CF,再根据两直线平行,内错角相等求出∠BAM=∠DFM,根据中点定义可得AM=MF,然后利用“角边角”证明△ABM和△FDM全等,再根据全等三角形对应边相等可得AB=DF,BM=DM,再根据“边角边”证明△BCE和△DFE全等,根据全等三角形对应边相等可得BE=DE,全等三角形对应角相等可得∠BEC=∠DEF,然后求出∠BED=∠CEF=90°,再根据等腰直角三角形的性质证明即可.
【解答】(1)证法一:
如答图1a,延长AB交CF于点D,
则易知△ABC与△BCD均为等腰直角三角形,
∴AB=BC=BD,
∴点B为线段AD的中点,
又∵点M为线段AF的中点,
∴BM为△ADF的中位线,
∴BM∥CF.
证法二:
如答图1b,延长BM交EF于D,
∵∠ABC=∠CEF=90°,
∴AB⊥CE,EF⊥CE,
∴AB∥EF,
∴∠BAM=∠DFM,
∵M是AF的中点,
∴AM=MF,
在△ABM和△FDM中,

∴△ABM≌△FDM(ASA),
∴AB=DF,
∵BE=CE﹣BC,DE=EF﹣DF,
∴BE=DE,
∴△BDE是等腰直角三角形,
∴∠EBM=45°,
∵在等腰直角△CEF中,∠ECF=45°,
∴∠EBM=∠ECF,
∴MB∥CF;
(2)解法一:
如答图2a所示,延长AB交CF于点D,则易知△BCD与△ABC为等腰直角三角形,
∴AB=BC=BD=a,AC=CDa,
∴点B为AD中点,又点M为AF中点,
∴BMDF.
分别延长FE与CA交于点G,则易知△CEF与△CEG均为等腰直角三角形,
∴CE=EF=GE=2a,CG=CFa,
∴点E为FG中点,又点M为AF中点,
∴MEAG.
∵CG=CFa,CA=CDa,
∴AG=DFa,
∴BM=MEaa.
解法二:如答图1b.
∵CB=a,CE=2a,
∴BE=CE﹣CB=2a﹣a=a,
∵△ABM≌△FDM,
∴BM=DM,
又∵△BED是等腰直角三角形,
∴△BEM是等腰直角三角形,
∴BM=MEBEa;
(3)证法一:
如答图3a,延长AB交CE于点D,连接DF,则易知△ABC与△BCD均为等腰直角三角形,
∴AB=BC=BD,AC=CD,
∴点B为AD中点,又点M为AF中点,∴BMDF.
延长FE与CB交于点G,连接AG,则易知△CEF与△CEG均为等腰直角三角形,
∴CE=EF=EG,CF=CG,
∴点E为FG中点,又点M为AF中点,∴MEAG.
在△ACG与△DCF中,

∴△ACG≌△DCF(SAS),
∴DF=AG,
∴BM=ME.
证法二:
如答图3b,延长BM交CF于D,连接BE、DE,
∵∠BCE=45°,
∴∠ACD=45°×2+45°=135°
∴∠BAC+∠ACF=45°+135°=180°,
∴AB∥CF,
∴∠BAM=∠DFM,
∵M是AF的中点,
∴AM=FM,
在△ABM和△FDM中,

∴△ABM≌△FDM(ASA),
∴AB=DF,BM=DM,
∴AB=BC=DF,
在△BCE和△DFE中,

∴△BCE≌△DFE(SAS),
∴BE=DE,∠BEC=∠DEF,
∴∠BED=∠BEC+∠CED=∠DEF+∠CED=∠CEF=90°,
∴△BDE是等腰直角三角形,
又∵BM=DM,
∴BM=MEBD,
故BM=ME.
【点评】本题考查了三角形中位线定理、全等三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出中位线、全等三角形和等腰直角三角形是解题的关键,也是本题的难点.
18.(2023秋 娄底期末)如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.
(1)点M、N运动几秒时,M、N两点重合?
(2)点M、N运动几秒时,可得到等边三角形AMN?
(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.
【考点】等边三角形的判定与性质;等腰三角形的性质.
【专题】动点型;模型思想.
【答案】见试题解答内容
【分析】(1)首先设点M、N运动x秒后,M、N两点重合,表示出M,N的运动路程,N的运动路程比M的运动路程多12cm,列出方程求解即可;
(2)根据题意设点M、N运动t秒后,可得到等边三角形AMN,然后表示出AM,AN的长,由于∠A等于60°,所以只要AM=AN三角形ANM就是等边三角形;
(3)首先假设△AMN是等腰三角形,可证出△ACM≌△ABN,可得CM=BN,设出运动时间,表示出CM,NB,NM的长,列出方程,可解出未知数的值.
【解答】解:(1)设点M、N运动x秒时,M、N两点重合,
x×1+12=2x,
解得:x=12;
(2)设点M、N运动t秒时,可得到等边三角形AMN,如图①,
AM=t×1=t,AN=AB﹣BN=12﹣2t,
∵三角形AMN是等边三角形,
∴t=12﹣2t,
解得t=4,
∴点M、N运动4秒时,可得到等边三角形AMN.
(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,
由(1)知12秒时M、N两点重合,恰好在C处,
如图②,假设△AMN是等腰三角形,
∴AN=AM,
∴∠AMN=∠ANM,
∴∠AMC=∠ANB,
∵AB=BC=AC,
∴△ACB是等边三角形,
∴∠C=∠B,
在△ACM和△ABN中,
∵,
∴△ACM≌△ABN(AAS),
∴CM=BN,
设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,
∴CM=y﹣12,NB=36﹣2y,CM=NB,
y﹣12=36﹣2y,
解得:y=16.故假设成立.
∴当点M、N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M、N运动的时间为16秒.
【点评】此题主要考查了等边三角形的性质及判定,关键是根据题意设出未知数,理清线段之间的数量关系.
19.(2024秋 辛集市期末)已知:∠MON=40°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O重合),连接AC交射线OE于点D.设∠OAC=x°.
(1)如图1,若AB∥ON,则
①∠ABO的度数是  20° ;
②当∠BAD=∠ABD时,x=  120 ;当∠BAD=∠BDA时,x=  60 .
(2)如图2,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.
【考点】三角形的角平分线、中线和高;三角形内角和定理;平行线的性质.
【专题】计算题.
【答案】见试题解答内容
【分析】利用角平分线的性质求出∠ABO的度数是关键,分类讨论的思想.
【解答】解:(1)①∵∠MON=40°,OE平分∠MON,
∴∠AOB=∠BON=20°,
∵AB∥ON,
∴∠ABO=20°,
②∵∠BAD=∠ABD,
∴∠BAD=20°,
∵∠AOB+∠ABO+∠OAB=180°,
∴∠OAC=120°,
∵∠BAD=∠BDA,∠ABO=20°,
∴∠BAD=80°,
∵∠AOB+∠ABO+∠OAB=180°,
∴∠OAC=60°;
故答案为:①20°; ②120,60;
(2)①当点D在线段OB上时,
∵OE是∠MON的角平分线,
∴∠AOB∠MON=20°,
∵AB⊥OM,
∴∠AOB+∠ABO=90°,
∴∠ABO=70°,
若∠BAD=∠ABD=70°,则x=20
若∠BAD=∠BDA(180°﹣70°)=55°,则x=35
若∠ADB=∠ABD=70°,则∠BAD=180°﹣2×70°=40°,∴x=50
②当点D在射线BE上时,因为∠ABE=110°,且三角形的内角和为180°,
所以只有∠BAD=∠BDA,此时x=125.
综上可知,存在这样的x的值,使得△ADB中有两个相等的角,
且x=20、35、50、125.
【点评】本题考查了三角形的内角和定理和三角形的外角性质的应用,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角之和.
20.(2020 锦州模拟)如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1),△ABD不动.
(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC(图2),证明:MB=MC.
(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.
(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.
【考点】全等三角形的判定与性质.
【专题】证明题;几何综合题;压轴题.
【答案】见试题解答内容
【分析】(1)连接AM,根据全等三角形的对应边相等可得AD=AE,AB=AC,全等三角形对应角相等可得∠BAD=∠CAE,再根据等腰三角形三线合一的性质得到∠MAD=∠MAE,然后利用“边角边”证明△ABM和△ACM全等,根据全等三角形对应边相等即可得证;
(2)延长DB、AE相交于E′,延长EC交AD于F,根据等腰三角形三线合一的性质得到BD=BE′,然后求出MB∥AE′,再根据两直线平行,内错角相等求出∠MBC=∠CAE,同理求出MC∥AD,根据两直线平行,同位角相等求出∠BCM=∠BAD,然后求出∠MBC=∠BCM,再根据等角对等边即可得证;
(3)延长BM交CE于F,根据两直线平行,内错角相等可得∠MDB=∠MEF,∠MBD=∠MFE,然后利用“角角边”证明△MDB和△MEF全等,根据全等三角形对应边相等可得MB=MF,然后根据直角三角形斜边上的中线等于斜边的一半证明即可.
【解答】证明:(1)如图2,连接AM,由已知得△ABD≌△ACE,
∴AD=AE,AB=AC,∠BAD=∠CAE,
∵MD=ME,
∴∠MAD=∠MAE,
∴∠MAD﹣∠BAD=∠MAE﹣∠CAE,
即∠BAM=∠CAM,
在△ABM和△ACM中,,
∴△ABM≌△ACM(SAS),
∴MB=MC;
(2)MB=MC.
理由如下:如图3,延长DB、AE相交于E′,延长EC交AD于F,
∴BD=BE′,CE=CF,
∵M是ED的中点,B是DE′的中点,
∴MB∥AE′,
∴∠MBC=∠CAE,
同理:MC∥AD,
∴∠BCM=∠BAD,
∵∠BAD=∠CAE,
∴∠MBC=∠BCM,
∴MB=MC;
解法二:如图3中,延长CM交BD于点T.
∵EC∥DT,
∴∠CEM=∠TDM,
在△ECM和△DTM中,

∴△ECM≌△DTM(ASA),
∴CM=MT,
∵∠CBT=90°,
∴BM=CM=MT.
(3)MB=MC还成立.
如图4,延长BM交CE于F,
∵CE∥BD,
∴∠MDB=∠MEF,∠MBD=∠MFE,
又∵M是DE的中点,
∴MD=ME,
在△MDB和△MEF中,

∴△MDB≌△MEF(AAS),
∴MB=MF,
∵∠ACE=90°,
∴∠BCF=90°,
∴MB=MC.
【点评】本题考查了全等三角形的判定与性质,等腰三角形三线合一的性质,等角对等边的性质,直角三角形斜边上的中线等于斜边的一半的性质,以及三角形的中位线定理,综合性较强,但难度不大,作辅助线构造出等腰三角形或全等三角形是解题的关键.
21世纪教育网(www.21cnjy.com)

展开更多......

收起↑

资源预览