【中考押题卷】2025年中考数学高频易错考前冲刺:数据分析(含解析)

资源下载
  1. 二一教育资源

【中考押题卷】2025年中考数学高频易错考前冲刺:数据分析(含解析)

资源简介

2025年中考数学复习:数据分析
一.选择题(共10小题)
1.(2016 南京)若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x的值为(  )
A.1 B.6 C.1或6 D.5或6
2.(2022 河北)五名同学捐款数分别是5,3,6,5,10(单位:元),捐10元的同学后来又追加了10元.追加后的5个数据与之前的5个数据相比,集中趋势相同的是(  )
A.只有平均数 B.只有中位数
C.只有众数 D.中位数和众数
3.(2016 临沂)某老师为了解学生周末学习时间的情况,在所任班级中随机调查了10名学生,绘成如图所示的条形统计图,则这10名学生周末学均时间是(  )
A.4 B.3 C.2 D.1
4.(2017 南通)一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是(  )
A.平均数 B.中位数 C.众数 D.方差
5.(2015 大庆)某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数和中位数分别是(  )
A.7环,7环 B.8环,7.5环 C.7环,7.5环 D.8环,6.5环
6.(2014 常州)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩平均数均是9.2环,方差分别为S甲2=0.56,S乙2=0.60,S丙2=0.50,S丁2=0.45,则成绩最稳定的是(  )
A.甲 B.乙 C.丙 D.丁
7.(2018 黑龙江模拟)已知一组数据6,8,10,x的中位数与平均数相等,这样的x有(  )
A.1个 B.2个
C.3个 D.4个以上(含4个)
8.(2019 上海)甲、乙两名同学本学期五次引体向上的测试成绩(个数)如图所示,下列判断正确的是(  )
A.甲的成绩比乙稳定
B.甲的最好成绩比乙高
C.甲的成绩的平均数比乙大
D.甲的成绩的中位数比乙大
9.(2019 恩施州)某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次为95,90,85.则小桐这学期的体育成绩是(  )
A.88.5 B.86.5 C.90 D.90.5
10.(2015 来宾)在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①S甲2>S乙2;②S甲2<S乙2;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定,由统计图可知正确的结论是(  )
A.①③ B.①④ C.②③ D.②④
二.填空题(共5小题)
11.(2017 江西)已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是    .
12.(2019 杭州)某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这(m+n)个数据的平均数等于   .
13.(2017 泰兴市校级二模)小明用S2[(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2]计算一组数据的方差,那么x1+x2+x3+…+x10=   .
14.(2014 浙江)有一组数据:3,a,4,6,7.它们的平均数是5,那么这组数据的方差是    .
15.(2012 天水)在一次捐款活动中,某班50名同学人人拿出自己的零花钱,有捐5元、10元、20元的,还有捐50元和100元的.如图统计图反映了不同捐款数的人数比例,那么该班同学平均每人捐款   元.
三.解答题(共5小题)
16.(2014 徐州)甲、乙两人在5次打靶测试中命中的环数如下:
甲:8,8,7,8,9
乙:5,9,7,10,9
(1)填写下表:
平均数 众数 中位数 方差
甲 8
   
8 0.4

   
9
   
3.2
(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?
(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差    .(填“变大”、“变小”或“不变”).
17.(2016 盐城)甲、乙两位同学参加数学综合素质测试,各项成绩如下(单位:分)
数与代数 空间与图形 统计与概率 综合与实践
学生甲 90 93 89 90
学生乙 94 92 94 86
(1)分别计算甲、乙成绩的中位数;
(2)如果数与代数、空间与图形、统计与概率、综合与实践的成绩按3:3:2:2计算,那么甲、乙的数学综合素质成绩分别为多少分?
18.(2016 自贡)我市开展“美丽自贡,创卫同行”活动,某校倡议学生利用双休日在“花海”参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息回答下列问题:
(1)将条形统计图补充完整;
(2)扇形图中的“1.5小时”部分圆心角是多少度?
(3)求抽查的学生劳动时间的众数、中位数.
19.(2015 河北)某厂生产A,B两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如表统计表及不完整的折线图.
A,B产品单价变化统计表
第一次 第二次 第三次
A产品单价(元/件) 6 5.2 6.5
B产品单价(元/件) 3.5 4 3
并求得了A产品三次单价的平均数和方差:
5.9,[(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]
(1)补全如图中B产品单价变化的折线图.B产品第三次的单价比上一次的单价降低了    %;
(2)求B产品三次单价的方差,并比较哪种产品的单价波动小;
(3)该厂决定第四次调价,A产品的单价仍为6.5元/件,B产品的单价比3元/件上调m%(m>0),使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值.
20.(2018 曲靖)某初级中学数学兴趣小组为了了解本校学生的年龄情况,随机调查了该校部分学生的年龄,整理数据并绘制如下不完整的统计图.
依据以上信息解答以下问题:
(1)求样本容量;
(2)直接写出样本的平均数,众数和中位数;
(3)若该校一共有1800名学生,估计该校年龄在15岁及以上的学生人数.
2025年中考数学复习:数据分析
参考答案与试题解析
题号 1 2 3 4 5 6 7 8 9 10
答案 C D B D C D C A A C
一.选择题(共10小题)
1.(2016 南京)若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x的值为(  )
A.1 B.6 C.1或6 D.5或6
【考点】方差.
【答案】C
【分析】根据数据x1,x2,…xn与数据x1+a,x2+a,…,xn+a的方差相同这个结论即可解决问题.
【解答】解:∵一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,
∴这组数据可能是2,3,4,5,6或1,2,3,4,5,
∴x=1或6,
故选:C.
【点评】本题考查方差、平均数等知识,解题的关键利用结论:数据x1,x2,…xn与数据x1+a,x2+a,…,xn+a的方差相同解决问题,属于中考常考题型.
2.(2022 河北)五名同学捐款数分别是5,3,6,5,10(单位:元),捐10元的同学后来又追加了10元.追加后的5个数据与之前的5个数据相比,集中趋势相同的是(  )
A.只有平均数 B.只有中位数
C.只有众数 D.中位数和众数
【考点】众数;算术平均数;中位数.
【专题】实数;应用意识.
【答案】D
【分析】根据中位数和众数的概念做出判断即可.
【解答】解:根据题意知,追加前5个数据的中位数是5,众数是5,
追加后5个数据的中位数是5,众数为5,
∵数据追加后平均数会变大,
∴集中趋势相同的只有中位数和众数,
故选:D.
【点评】本题主要考查平均数、中位数和众数的知识,熟练掌握平均数、中位数和众数的基本概念是解题的关键.
3.(2016 临沂)某老师为了解学生周末学习时间的情况,在所任班级中随机调查了10名学生,绘成如图所示的条形统计图,则这10名学生周末学均时间是(  )
A.4 B.3 C.2 D.1
【考点】加权平均数;条形统计图.
【答案】B
【分析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.本题利用加权平均数的公式即可求解.
【解答】解:根据题意得:
(1×1+2×2+4×3+2×4+1×5)÷10=3(小时),
答:这10名学生周末学均时间是3小时;
故选:B.
【点评】此题考查了加权平均数,本题易出现的错误是求1,2,4,2,1这五个数的平均数,对平均数的理解不正确.
4.(2017 南通)一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是(  )
A.平均数 B.中位数 C.众数 D.方差
【考点】统计量的选择.
【答案】D
【分析】依据平均数、中位数、众数、方差的定义和公式求解即可.
【解答】解:A、原来数据的平均数是2,添加数字2后平均数仍为2,故A与要求不符;
B、原来数据的中位数是2,添加数字2后中位数仍为2,故B与要求不符;
C、原来数据的众数是2,添加数字2后众数仍为2,故C与要求不符;
D、原来数据的方差S2,
添加数字2后的方差S2,故方差发生了变化.
故选:D.
【点评】本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键.
5.(2015 大庆)某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数和中位数分别是(  )
A.7环,7环 B.8环,7.5环 C.7环,7.5环 D.8环,6.5环
【考点】众数;条形统计图;中位数.
【专题】图表型.
【答案】C
【分析】中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.
【解答】解:由条形统计图中出现频数最大条形最高的数据是在第三组,7环,故众数是7(环);
因图中是按从小到大的顺序排列的,最中间的环数是7(环)、8(环),故中位数是7.5(环).
故选:C.
【点评】本题考查的是众数和中位数的定义.要注意,当所给数据有单位时,所求得的众数和中位数与原数据的单位相同,不要漏单位.
6.(2014 常州)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩平均数均是9.2环,方差分别为S甲2=0.56,S乙2=0.60,S丙2=0.50,S丁2=0.45,则成绩最稳定的是(  )
A.甲 B.乙 C.丙 D.丁
【考点】方差.
【答案】D
【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【解答】解;∵S甲2=0.56,S乙2=0.60,S丙2=0.50,S丁2=0.45,
∴S丁2<S丙2<S甲2<S乙2,
∴成绩最稳定的是丁;
故选:D.
【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
7.(2018 黑龙江模拟)已知一组数据6,8,10,x的中位数与平均数相等,这样的x有(  )
A.1个 B.2个
C.3个 D.4个以上(含4个)
【考点】中位数.
【答案】C
【分析】因为中位数的值与大小排列顺序有关,而此题中x的大小位置未定,故应该分类讨论x所处的所有位置情况:从小到大(或从大到小)排列在中间(在第二位或第三位结果不影响);结尾;开始的位置.
【解答】解:(1)将这组数据从大到小的顺序排列为10,8,x,6,
处于中间位置的数是8,x,
那么由中位数的定义可知,这组数据的中位数是(8+x)÷2,
平均数为(10+8+x+6)÷4,
∵数据10,8,x,6,的中位数与平均数相等,
∴(8+x)÷2=(10+8+x+6)÷4,
解得x=8,大小位置与8对调,不影响结果,符合题意;
(2)将这组数据从大到小的顺序排列后10,8,6,x,
中位数是(8+6)÷2=7,
此时平均数是(10+8+x+6)÷4=7,
解得x=4,符合排列顺序;
(3)将这组数据从大到小的顺序排列后x,10,8,6,
中位数是(10+8)÷2=9,
平均数(10+8+x+6)÷4=9,
解得x=12,符合排列顺序.
∴x的值为4、8或12.
故选:C.
【点评】本题结合平均数考查了确定一组数据的中位数的能力.涉及到分类讨论思想,较难,要明确中位数的值与大小排列顺序有关,一些学生往往对这个概念掌握不清楚,计算方法不明确而解答不完整.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.
8.(2019 上海)甲、乙两名同学本学期五次引体向上的测试成绩(个数)如图所示,下列判断正确的是(  )
A.甲的成绩比乙稳定
B.甲的最好成绩比乙高
C.甲的成绩的平均数比乙大
D.甲的成绩的中位数比乙大
【考点】方差;算术平均数;中位数.
【专题】统计的应用.
【答案】A
【分析】分别计算出两人成绩的平均数、中位数、方差可得出答案.
【解答】解:甲同学的成绩依次为:7、8、8、8、9,
则其中位数为8,平均数为8,方差为[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4;
乙同学的成绩依次为:6、7、8、9、10,
则其中位数为8,平均数为8,方差为[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2,
∴甲的成绩比乙稳定,甲、乙的平均成绩和中位数均相等,甲的最好成绩比乙低,
故选:A.
【点评】本题考查了方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了中位数.
9.(2019 恩施州)某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次为95,90,85.则小桐这学期的体育成绩是(  )
A.88.5 B.86.5 C.90 D.90.5
【考点】加权平均数.
【专题】数据的收集与整理;运算能力.
【答案】A
【分析】直接利用每部分分数所占百分比进而计算得出答案.
【解答】解:由题意可得,小桐这学期的体育成绩是:
95×20%+90×30%+85×50%=19+27+42.5=88.5(分).
故选:A.
【点评】此题主要考查了加权平均数,正确理解各部分所占百分比是解题关键.
10.(2015 来宾)在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①S甲2>S乙2;②S甲2<S乙2;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定,由统计图可知正确的结论是(  )
A.①③ B.①④ C.②③ D.②④
【考点】方差;折线统计图.
【答案】C
【分析】从折线图中得出甲乙的射击成绩,再利用方差的公式计算,即可得出答案.
【解答】解:由图中知,甲的成绩为7,7,8,9,8,9,10,9,9,9,
乙的成绩为8,9,7,8,10,7,9,10,7,10,
甲=(7+7+8+9+8+9+10+9+9+9)÷10=8.5,
乙=(8+9+7+8+10+7+9+10+7+10)÷10=8.5,
甲的方差S甲2=[2×(7﹣8.5)2+2×(8﹣8.5)2+(10﹣8.5)2+5×(9﹣8.5)2]÷10=0.85,
乙的方差S乙2=[3×(7﹣8.5)2+2×(8﹣8.5)2+2×(9﹣8.5)2+3×(10﹣8.5)2]÷10=1.45
∴S2甲<S2乙,
∴甲的射击成绩比乙稳定;
故选:C.
【点评】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2[(x1)2+(x2)2+…+(xn)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
二.填空题(共5小题)
11.(2017 江西)已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是  5 .
【考点】众数;算术平均数;中位数.
【答案】见试题解答内容
【分析】根据平均数与中位数的定义可以先求出x,y的值,进而就可以确定这组数据的众数.
【解答】解:∵一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,
∴(2+5+x+y+2x+11)(x+y)=7,
解得y=9,x=5,
∴这组数据的众数是5.
故答案为5.
【点评】本题主要考查平均数、众数与中位数的定义,平均数是指在一组数据中所有数据之和再除以数据的个数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.一组数据中出现次数最多的数据叫做众数.
12.(2019 杭州)某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这(m+n)个数据的平均数等于  .
【考点】加权平均数.
【专题】数据的收集与整理.
【答案】见试题解答内容
【分析】直接利用已知表示出两组数据的总和,进而求出平均数.
【解答】解:∵某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,
则这m+n个数据的平均数等于:.
故答案为:.
【点评】此题主要考查了加权平均数,正确得出两组数据的总和是解题关键.
13.(2017 泰兴市校级二模)小明用S2[(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2]计算一组数据的方差,那么x1+x2+x3+…+x10= 30 .
【考点】方差.
【答案】见试题解答内容
【分析】根据计算方差的公式能够确定数据的个数和平均数,从而求得所有数据的和.
【解答】解:∵S2[(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2],
∴平均数为3,共10个数据,
∴x1+x2+x3+…+x10=10×3=30,
故答案为:30.
【点评】本题考查了方差的知识,牢记方差公式是解答本题的关键,难度不大.
14.(2014 浙江)有一组数据:3,a,4,6,7.它们的平均数是5,那么这组数据的方差是  2 .
【考点】方差;算术平均数.
【答案】见试题解答内容
【分析】先由平均数的公式计算出a的值,再根据方差的公式计算.一般地设n个数据,x1,x2,…,xn的平均数为,(x1+x2+…+xn),则方差S2[(x1)2+(x2)2+…+(xn)2].
【解答】解:a=5×5﹣3﹣4﹣6﹣7=5,
s2[(3﹣5)2+(5﹣5)2+(4﹣5)2+(6﹣5)2+(7﹣5)2]=2.
故答案为:2.
【点评】本题考查了方差的定义:一般地设n个数据,x1,x2,…,xn的平均数为,(x1+x2+…+xn),则方差S2[(x1)2+(x2)2+…+(xn)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
15.(2012 天水)在一次捐款活动中,某班50名同学人人拿出自己的零花钱,有捐5元、10元、20元的,还有捐50元和100元的.如图统计图反映了不同捐款数的人数比例,那么该班同学平均每人捐款 31.2 元.
【考点】加权平均数;扇形统计图.
【专题】压轴题;图表型.
【答案】见试题解答内容
【分析】根据扇形统计图的定义,各部分占总体的百分比之和为1,用捐的具体钱数乘以所占的百分比,再相加,即可得该班同学平均每人捐款数.
【解答】解:该班同学平均每人捐款:100×12%+50×16%+20×44%+10×20%+5×8%=31.2(元).
故答案为:31.2.
【点评】本题主要考查扇形统计图的定义,加权平均数等知识,解题的关键是利用加权平均数解决问题.
三.解答题(共5小题)
16.(2014 徐州)甲、乙两人在5次打靶测试中命中的环数如下:
甲:8,8,7,8,9
乙:5,9,7,10,9
(1)填写下表:
平均数 众数 中位数 方差
甲 8
 8 
8 0.4

 8 
9
 9 
3.2
(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?
(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差  变小 .(填“变大”、“变小”或“不变”).
【考点】方差;算术平均数;中位数;众数.
【专题】计算题.
【答案】见试题解答内容
【分析】(1)根据众数、平均数和中位数的定义求解;
(2)根据方差的意义求解;
(3)根据方差公式求解.
【解答】解:(1)甲的众数为8,乙的平均数(5+9+7+10+9)=8,乙的中位数为9;
(2)因为他们的平均数相等,而甲的方差小,发挥比较稳定,所以选择甲参加射击比赛;
(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差变小.
故答案为:8,8,9;变小.
【点评】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差通常用s2来表示,计算公式是:s2[(x1﹣x )2+(x2﹣x )2+…+(xn﹣x )2];方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了算术平均数、中位数和众数.
17.(2016 盐城)甲、乙两位同学参加数学综合素质测试,各项成绩如下(单位:分)
数与代数 空间与图形 统计与概率 综合与实践
学生甲 90 93 89 90
学生乙 94 92 94 86
(1)分别计算甲、乙成绩的中位数;
(2)如果数与代数、空间与图形、统计与概率、综合与实践的成绩按3:3:2:2计算,那么甲、乙的数学综合素质成绩分别为多少分?
【考点】中位数;加权平均数.
【答案】见试题解答内容
【分析】(1)将一组数据按照从小到大(或从大到小)的顺序排列,处于中间位置的数就是这组数据的中位数进行分析;
(2)数学综合素质成绩=数与代数成绩空间与图形成绩统计与概率成绩综合与实践成绩,依此分别进行计算即可求解.
【解答】解:(1)甲的成绩从小到大的顺序排列为:89,90,90,93,中位数为90;
乙的成绩从小到大的顺序排列为:86,92,94,94,中位数为(92+94)÷2=93.
答:甲成绩的中位数是90,乙成绩的中位数是93;
(2)3+3+2+2=10
甲90938990
=27+27.9+17.8+18
=90.7(分)
乙94929486
=28.2+27.6+18.8+17.2
=91.8(分)
答:甲的数学综合素质成绩为90.7分,乙的数学综合素质成绩为91.8分.
【点评】此题考查了中位数和加权平均数,用到的知识点是中位数和加权平均数,掌握它们的计算公式是本题的关键.
18.(2016 自贡)我市开展“美丽自贡,创卫同行”活动,某校倡议学生利用双休日在“花海”参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息回答下列问题:
(1)将条形统计图补充完整;
(2)扇形图中的“1.5小时”部分圆心角是多少度?
(3)求抽查的学生劳动时间的众数、中位数.
【考点】众数;扇形统计图;条形统计图;中位数.
【专题】计算题;数据的收集与整理.
【答案】见试题解答内容
【分析】(1)根据学生劳动“1小时”的人数除以占的百分比,求出总人数,
(2)进而求出劳动“1.5小时”的人数,以及占的百分比,乘以360即可得到结果;
(3)根据统计图中的数据确定出学生劳动时间的众数与中位数即可.
【解答】解:(1)根据题意得:30÷30%=100(人),
∴学生劳动时间为“1.5小时”的人数为100﹣(12+30+18)=40(人),
补全统计图,如图所示:
(2)根据题意得:40%×360°=144°,
则扇形图中的“1.5小时”部分圆心角是144°;
(3)根据题意得:抽查的学生劳动时间的众数为1.5小时、中位数为1.5小时.
【点评】此题考查了众数,扇形统计图,条形统计图,以及中位数,弄清题中的数据是解本题的关键.
19.(2015 河北)某厂生产A,B两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如表统计表及不完整的折线图.
A,B产品单价变化统计表
第一次 第二次 第三次
A产品单价(元/件) 6 5.2 6.5
B产品单价(元/件) 3.5 4 3
并求得了A产品三次单价的平均数和方差:
5.9,[(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]
(1)补全如图中B产品单价变化的折线图.B产品第三次的单价比上一次的单价降低了  25 %;
(2)求B产品三次单价的方差,并比较哪种产品的单价波动小;
(3)该厂决定第四次调价,A产品的单价仍为6.5元/件,B产品的单价比3元/件上调m%(m>0),使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值.
【考点】方差;统计表;折线统计图;算术平均数;中位数.
【答案】见试题解答内容
【分析】(1)根据题目提供数据补充折线统计图即可;
(2)分别计算平均数及方差即可;
(3)首先确定这四次单价的中位数,然后确定第四次调价的范围,根据“A产品这四次单价的中位数是B产品四次单价中位数的2倍少1”列式求m即可.
【解答】解:(1)如图2所示:
B产品第三次的单价比上一次的单价降低了25%,
(2)(3.5+4+3)=3.5,

∵B产品的方差小,
∴B产品的单价波动小;
(3)第四次调价后,对于A产品,这四次单价的中位数为;
对于B产品,∵m>0,
∴第四次单价大于3,
∵1,
∴第四次单价小于4,
∴2﹣1,
∴m=25.
【点评】本题考查了方差、折线统计图、算术平均数、中位数的知识,解题的关键是根据方差公式进行有关的运算,难度不大.
20.(2018 曲靖)某初级中学数学兴趣小组为了了解本校学生的年龄情况,随机调查了该校部分学生的年龄,整理数据并绘制如下不完整的统计图.
依据以上信息解答以下问题:
(1)求样本容量;
(2)直接写出样本的平均数,众数和中位数;
(3)若该校一共有1800名学生,估计该校年龄在15岁及以上的学生人数.
【考点】众数;总体、个体、样本、样本容量;用样本估计总体;加权平均数;中位数.
【专题】常规题型;统计的应用.
【答案】见试题解答内容
【分析】(1)由12岁的人数及其所占百分比可得样本容量;
(2)先求出14、16岁的人数,再根据平均数、众数和中位数的定义求解可得;
(3)用总人数乘以样本中15、16岁的人数所占比例可得.
【解答】解:(1)样本容量为6÷12%=50;
(2)14岁的人数为50×28%=14、16岁的人数为50﹣(6+10+14+18)=2,
则这组数据的平均数为14(岁),
中位数为14(岁),众数为15岁;
(3)估计该校年龄在15岁及以上的学生人数为1800720人.
【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
21世纪教育网(www.21cnjy.com)

展开更多......

收起↑

资源预览