【中考押题卷】2025年中考数学高频易错考前冲刺:四边形(含解析)

资源下载
  1. 二一教育资源

【中考押题卷】2025年中考数学高频易错考前冲刺:四边形(含解析)

资源简介

2025年中考数学复习:四变形
一.选择题(共10小题)
1.(2018 拱墅区二模)如图,已知E、F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD的中点,则下列结论:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤AMMF.其中正确结论的个数是(  )
A.5个 B.4个 C.3个 D.2个
2.(2024 娄星区二模)如图,已知菱形ABCD的边长为6,点M是对角线AC上的一动点,且∠ABC=120°,则MA+MB+MD的最小值是(  )
A. B.3+3 C.6 D.
3.(2014 烟台)如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为(  )
A.28° B.52° C.62° D.72°
4.(2017 陕西)如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为(  )
A. B. C. D.
5.(2019 十堰)矩形具有而平行四边形不一定具有的性质是(  )
A.对边相等 B.对角相等
C.对角线相等 D.对角线互相平分
6.(2016 咸宁)已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为(  )
A.(0,0) B.(1,) C.(,) D.(,)
7.(2016 内江)下列命题中,真命题是(  )
A.对角线相等的四边形是矩形
B.对角线互相垂直的四边形是菱形
C.对角线互相平分的四边形是平行四边形
D.对角线互相垂直平分的四边形是正方形
8.(2019 西宁二模)如图,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,动点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿BC翻折,点P的对应点为点P′.设Q点运动的时间为t秒,若四边形QP′CP为菱形,则t的值为(  )
A. B.2 C. D.3
9.(2016 苏州)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为(  )
A.(3,1) B.(3,) C.(3,) D.(3,2)
10.(2024春 怀宁县期末)如图,在直角三角形ABC中,∠ACB=90°,AC=3,BC=4,点M是边AB上一点(不与点A,B重合),作ME⊥AC于点E,MF⊥BC于点F,若点P是EF的中点,则CP的最小值是(  )
A.1.2 B.1.5 C.2.4 D.2.5
二.填空题(共5小题)
11.(2017 黄冈)如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是   .
12.(2019 安顺)如图,在Rt△ABC中,∠BAC=90°,且BA=3,AC=4,点D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN的最小值为   .
13.(2018 宿迁)若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是    .
14.(2014 丹东)如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为    .
15.(2015 和平区校级自主招生)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是    .
三.解答题(共5小题)
16.(2015 荆州)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.
(1)证明:PC=PE;
(2)求∠CPE的度数;
(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.
17.(2015 玉林)如图,在矩形ABCD中,AB=5,AD=3,点P是AB边上一点(不与A,B重合),连接CP,过点P作PQ⊥CP交AD边于点Q,连接CQ.
(1)当△CDQ≌△CPQ时,求AQ的长;
(2)取CQ的中点M,连接MD,MP,MD⊥MP,求AQ的长.
18.(2013 江北区校级模拟)如图,已知 ABCD中,AE平分∠BAD交DC于E,DF⊥BC于F,交AE于G,且AD=DF.过点D作AB的垂线,分别交AE、AB于点M、N.
(1)若M为AG中点,且DM=2,求DE的长;
(2)求证:AB=CF+DM.
19.(2018 北京)如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.
(1)求证:GF=GC;
(2)用等式表示线段BH与AE的数量关系,并证明.
20.(2016 东平县一模)如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.
(1)求证:BD=DF;
(2)求证:四边形BDFG为菱形;
(3)若AG=13,CF=6,求四边形BDFG的周长.
2025年中考数学复习:四变形
参考答案与试题解析
题号 1 2 3 4 5 6 7 8 9 10
答案 B D C B C D C B B A
一.选择题(共10小题)
1.(2018 拱墅区二模)如图,已知E、F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD的中点,则下列结论:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤AMMF.其中正确结论的个数是(  )
A.5个 B.4个 C.3个 D.2个
【考点】正方形的性质;全等三角形的判定与性质.
【专题】压轴题.
【答案】B
【分析】根据正方形的性质可得AB=BC=AD,∠ABC=∠BAD=90°,再根据中点定义求出AE=BF,然后利用“边角边”证明△ABF和△DAE全等,根据全等三角形对应角相等可得∠BAF=∠ADE,然后求出∠ADE+∠DAF=∠BAD=90°,从而求出∠AMD=90°,再根据邻补角的定义可得∠AME=90°,从而判断①正确;根据中线的定义判断出∠ADE≠∠EDB,然后求出∠BAF≠∠EDB,判断出②错误;根据直角三角形的性质判断出△AED、△MAD、△MEA三个三角形相似,利用相似三角形对应边成比例可得2,然后求出MD=2AM=4EM,判断出④正确,设正方形ABCD的边长为2a,利用勾股定理列式求出AF,再根据相似三角形对应边成比例求出AM,然后求出MF,消掉a即可得到AMMF,判断出⑤正确;过点M作MN⊥AB于N,求出MN、NB,然后利用勾股定理列式求出BM,过点M作GH∥AB,过点O作OK⊥GH于K,然后求出OK、MK,再利用勾股定理列式求出MO,根据正方形的性质求出BO,然后利用勾股定理逆定理判断出∠BMO=90°,从而判断出③正确.
【解答】解:在正方形ABCD中,AB=BC=AD,∠ABC=∠BAD=90°,
∵E、F分别为边AB,BC的中点,
∴AE=BFBC,
在△ABF和△DAE中,

∴△ABF≌△DAE(SAS),
∴∠BAF=∠ADE,
∵∠BAF+∠DAF=∠BAD=90°,
∴∠ADE+∠DAF=∠BAD=90°,
∴∠AMD=180°﹣(∠ADE+∠DAF)=180°﹣90°=90°,
∴∠AME=180°﹣∠AMD=180°﹣90°=90°,故①正确;
∵DE是△ABD的中线,
∴∠ADE≠∠EDB,
∴∠BAF≠∠EDB,故②错误;
∵∠BAD=90°,AM⊥DE,
∴△AED∽△MAD∽△MEA,
∴2,
∴AM=2EM,MD=2AM,
∴MD=2AM=4EM,故④正确;
设正方形ABCD的边长为2a,则BF=a,
在Rt△ABF中,AFa,
∵∠BAF=∠MAE,∠ABC=∠AME=90°,
∴△AME∽△ABF,
∴,
即,
解得AMa,
∴MF=AF﹣AMaaa,
∴AMMF,故⑤正确;
如图,过点M作MN⊥AB于N,
则,
即,
解得MNa,ANa,
∴NB=AB﹣AN=2aaa,
根据勾股定理,BMa,
过点M作GH∥AB,过点O作OK⊥GH于K,
则OK=aaa,MKa﹣aa,
在Rt△MKO中,MOa,
根据正方形的性质,BO=2aa,
∵BM2+MO2=(a)2+(a)2=2a2,
BO2=(a)2=2a2,
∴BM2+MO2=BO2,
∴△BMO是直角三角形,∠BMO=90°,故③正确;
综上所述,正确的结论有①③④⑤共4个.
故选:B.
【点评】本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理的应用,勾股定理逆定理的应用,综合性较强,难度较大,仔细分析图形并作出辅助线构造出直角三角形与相似三角形是解题的关键.
2.(2024 娄星区二模)如图,已知菱形ABCD的边长为6,点M是对角线AC上的一动点,且∠ABC=120°,则MA+MB+MD的最小值是(  )
A. B.3+3 C.6 D.
【考点】菱形的性质;等边三角形的判定与性质.
【专题】矩形 菱形 正方形;推理能力.
【答案】D
【分析】过点M作ME⊥AB于点E,连接BD交AC于O,点M运动到DE上,且DE⊥射线AB时,DE取得最小值,此时DE最短,即MA+MB+MD最小,根据菱形性质和等边三角形的性质即可求出DE的长,进而可得结论.
【解答】解:如图,过点M作ME⊥AB于点E,连接BD交AC于O,
∵菱形ABCD中,∠ABC=120°,
∴∠DAB=60°,AD=AB=DC=BC,
∴△ADB是等边三角形,
∴∠MAE=30°,
∴AM=2ME,
∵MD=MB,
∴MA+MB+MD=2ME+2DM=2DE,
点M运动到DE上,且DE⊥射线AB时,DE取得最小值,此时DE最短,即MA+MB+MD最小,
∵菱形ABCD的边长为6,
∴DE3,
∴2DE=6.
∴MA+MB+MD的最小值是6.
故选:D.
【点评】本题考查了菱形的性质,等边三角形的判定与性质,解决本题的关键是掌握菱形的性质,等边三角形的判定与性质.
3.(2014 烟台)如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为(  )
A.28° B.52° C.62° D.72°
【考点】菱形的性质;全等三角形的判定与性质.
【答案】C
【分析】根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.
【解答】解:∵四边形ABCD为菱形,
∴AB∥CD,AB=BC,
∴∠MAO=∠NCO,∠AMO=∠CNO,
在△AMO和△CNO中,
∵,
∴△AMO≌△CNO(ASA),
∴AO=CO,
∵AB=BC,
∴BO⊥AC,
∴∠BOC=90°,
∵∠DAC=28°,
∴∠BCA=∠DAC=28°,
∴∠OBC=90°﹣28°=62°.
故选:C.
【点评】本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.
4.(2017 陕西)如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为(  )
A. B. C. D.
【考点】矩形的性质.
【答案】B
【分析】根据S△ABES矩形ABCD=3 AE BF,先求出AE,再求出BF即可.
【解答】解:如图,连接BE.
∵四边形ABCD是矩形,
∴AB=CD=2,BC=AD=3,∠D=90°,
在Rt△ADE中,AE,
∵S△ABES矩形ABCD=3 AE BF,
∴BF.
故选:B.
【点评】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.
5.(2019 十堰)矩形具有而平行四边形不一定具有的性质是(  )
A.对边相等 B.对角相等
C.对角线相等 D.对角线互相平分
【考点】矩形的性质;平行四边形的性质.
【专题】证明题.
【答案】C
【分析】矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.
【解答】解:矩形的对角线相等,而平行四边形的对角线不一定相等.
故选:C.
【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.如,矩形的对角线相等.
6.(2016 咸宁)已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为(  )
A.(0,0) B.(1,) C.(,) D.(,)
【考点】菱形的性质;轴对称﹣最短路线问题;坐标与图形性质.
【答案】D
【分析】如图连接AC,AD,分别交OB于G、P,作BK⊥OA于K.首先说明点P就是所求的点,再求出点B坐标,求出直线OB、DA,列方程组即可解决问题.
【解答】解:如图连接AC,AD,分别交OB于G、P,作BK⊥OA于K.
∵四边形OABC是菱形,
∴AC⊥OB,GC=AG,OG=BG=2,A、C关于直线OB对称,
∴PC+PD=PA+PD=DA,
∴此时PC+PD最短,
在Rt△AOG中,AG,
∴AC=2,
∵OA BK AC OB,
∴BK=4,AK3,
∴点B坐标(8,4),
∴直线OB解析式为yx,直线AD解析式为yx+1,
由解得,
∴点P坐标(,).
故选:D.
【点评】本题考查菱形的性质、轴对称﹣最短问题、坐标与图象的性质等知识,解题的关键是正确找到点P位置,构建一次函数,列出方程组求交点坐标,属于中考常考题型.
7.(2016 内江)下列命题中,真命题是(  )
A.对角线相等的四边形是矩形
B.对角线互相垂直的四边形是菱形
C.对角线互相平分的四边形是平行四边形
D.对角线互相垂直平分的四边形是正方形
【考点】正方形的判定;命题与定理;平行四边形的判定;菱形的判定;矩形的判定.
【答案】C
【分析】A、根据矩形的定义作出判断;
B、根据菱形的性质作出判断;
C、根据平行四边形的判定定理作出判断;
D、根据正方形的判定定理作出判断.
【解答】解:A、两条对角线相等且相互平分的四边形为矩形;故本选项错误;
B、对角线互相垂直平分的四边形是菱形;故本选项错误;
C、对角线互相平分的四边形是平行四边形;故本选项正确;
D、对角线互相垂直平分且相等的四边形是正方形;故本选项错误;
故选:C.
【点评】本题综合考查了正方形、矩形、菱形及平行四边形的判定.解答此题时,必须理清矩形、正方形、菱形与平行四边形间的关系.
8.(2019 西宁二模)如图,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,动点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿BC翻折,点P的对应点为点P′.设Q点运动的时间为t秒,若四边形QP′CP为菱形,则t的值为(  )
A. B.2 C. D.3
【考点】菱形的性质;翻折变换(折叠问题).
【专题】压轴题;动点型.
【答案】B
【分析】首先连接PP′交BC于O,根据菱形的性质可得PP′⊥CQ,可证出PO∥AC,根据平行线分线段成比例可得 ,再表示出AP、AB、CO的长,代入比例式可以算出t的值.
【解答】解:连接PP′交BC于O,
∵若四边形QPCP′为菱形,
∴PP′⊥QC,
∴∠POQ=90°,
∵∠ACB=90°,
∴PO∥AC,
∴,
∵设点Q运动的时间为t秒,
∴APt,QB=t,
∴QC=6﹣t,
∴CO=3,
∵AC=CB=6,∠ACB=90°,
∴AB=6,
∴,
解得:t=2,
故选:B.
【点评】此题主要考查了菱形的性质,勾股定理,平行线分线段成比例,关键是熟记平行线分线段成比例定理的推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.推出比例式,再表示出所需要的线段长代入即可.
9.(2016 苏州)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为(  )
A.(3,1) B.(3,) C.(3,) D.(3,2)
【考点】矩形的性质;轴对称﹣最短路线问题;坐标与图形性质.
【答案】B
【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.
【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.
∵D(,0),A(3,0),
∴H(,0),
∴直线CH解析式为yx+4,
∴x=3时,y,
∴点E坐标(3,)
故选:B.
【点评】本题考查矩形的性质、坐标与图形的性质、轴对称﹣最短问题、一次函数等知识,解题的关键是利用轴对称找到点E位置,学会利用一次函数解决交点问题,属于中考常考题型.
10.(2024春 怀宁县期末)如图,在直角三角形ABC中,∠ACB=90°,AC=3,BC=4,点M是边AB上一点(不与点A,B重合),作ME⊥AC于点E,MF⊥BC于点F,若点P是EF的中点,则CP的最小值是(  )
A.1.2 B.1.5 C.2.4 D.2.5
【考点】矩形的判定与性质;垂线段最短;勾股定理.
【专题】等腰三角形与直角三角形;矩形 菱形 正方形;推理能力.
【答案】A
【分析】先由勾股定理求出AB=5,再证四边形CEMF是矩形,得EF=CM,当CM⊥AB时,CM最短,此时EF也最小,则CP最小,然后由三角形面积求出CM=2.4,即可得出答案.
【解答】解:连接CM,如图所示:
∵∠ACB=90°,AC=3,BC=4,
∴AB5,
∵ME⊥AC,MF⊥BC,∠ACB=90°,
∴四边形CEMF是矩形,
∴EF=CM,
∵点P是EF的中点,
∴CPEF,
当CM⊥AB时,CM最短,
此时EF也最小,则CP最小,
∵△ABC的面积AB×CMAC×BC,
∴CM2.4,
∴CPEFCM=1.2,
故选:A.
【点评】本题考查了矩形的判定与性质、勾股定理、三角形面积以及最小值等知识;熟练掌握矩形的判定与性质是解题的关键.
二.填空题(共5小题)
11.(2017 黄冈)如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是 45° .
【考点】正方形的性质;等边三角形的性质.
【答案】见试题解答内容
【分析】根据正方形的性质,可得AB与AD的关系,∠BAD的度数,根据等边三角形的性质,可得AE与AD的关系,∠AED的度数,根据等腰三角形的性质,可得∠AEB与∠ABE的关系,根据三角形的内角和,可得∠AEB的度数,根据角的和差,可得答案.
【解答】解:∵四边形ABCD是正方形,
∴AB=AD,∠BAD=90°.
∵等边三角形ADE,
∴AD=AE,∠DAE=∠AED=60°.
∠BAE=∠BAD+∠DAE=90°+60°=150°,
AB=AE,
∠AEB=∠ABE=(180°﹣∠BAE)÷2=15°,
∠BED=∠DEA﹣∠AEB=60°﹣15°=45°.
故答案为:45°.
【点评】本题考查了正方形的性质和等边三角形的性质,先求出∠BAE的度数,再求出∠AEB,最后求出答案.
12.(2019 安顺)如图,在Rt△ABC中,∠BAC=90°,且BA=3,AC=4,点D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN的最小值为  .
【考点】矩形的判定与性质;垂线段最短.
【专题】等腰三角形与直角三角形;矩形 菱形 正方形.
【答案】见试题解答内容
【分析】连接AD,由勾股定理求出BC的长,再证明四边形DMAN是矩形,可得MN=AD,根据垂线段最短和三角形面积即可解决问题.
【解答】解:连接AD,
∵∠BAC=90°,且BA=3,AC=4,
∴BC5,
∵DM⊥AB,DN⊥AC,
∴∠DMA=∠DNA=∠BAC=90°,
∴四边形DMAN是矩形,
∴MN=AD,
∴当AD⊥BC时,AD的值最小,
此时,△ABC的面积AB×ACBC×AD,
∴AD,
∴MN的最小值为;
故答案为:.
【点评】本题考查了矩形的判定和性质、勾股定理、三角形面积、垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
13.(2018 宿迁)若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是  八 .
【考点】多边形内角与外角.
【答案】见试题解答内容
【分析】任何多边形的外角和是360°,即这个多边形的内角和是3×360°.n边形的内角和是(n﹣2) 180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.
【解答】解:设多边形的边数为n,根据题意,得
(n﹣2) 180=3×360,
解得n=8.
则这个多边形的边数是八.
【点评】已知多边形的内角和求边数,可以转化为方程的问题来解决.
14.(2014 丹东)如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为   .
【考点】菱形的性质;全等三角形的判定与性质;等边三角形的性质.
【专题】动点型.
【答案】见试题解答内容
【分析】延长AB至M,使BM=AE,连接FM,证出△DAE≌EMF,得到△BMF是等边三角形,再利用菱形的边长为4求出时间t的值.
【解答】
解:延长AB至M,使BM=AE,连接FM,
∵四边形ABCD是菱形,∠ADC=120°
∴AB=AD,∠A=60°,
∵BM=AE,
∴AD=ME,
∵△DEF为等边三角形,
∴∠DAE=∠DFE=60°,DE=EF=FD,
∴∠MEF+∠DEA=120°,∠ADE+∠DEA=180°﹣∠A=120°,
∴∠MEF=∠ADE,
∴在△DAE和△EMF中,
∴△DAE≌EMF(SAS),
∴AE=MF,∠M=∠A=60°,
又∵BM=AE,
∴△BMF是等边三角形,
∴BF=AE,
∵AE=t,CF=2t,
∴BC=CF+BF=2t+t=3t,
∵BC=4,
∴3t=4,
∴t
故答案为:.
或连接BD.根据SAS证明△ADE≌△BDF,得到AE=BF,列出方程即可.
【点评】本题主要考查了菱形的性质,全等三角形的判定与性质,等边三角形的性质等知识,解题的关键是运用三角形全等得出△BMF是等边三角形.
15.(2015 和平区校级自主招生)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是   .
【考点】正方形的性质;直角三角形斜边上的中线;勾股定理.
【答案】见试题解答内容
【分析】根据正方形的性质求出AB=BC=1,CE=EF=3,∠E=90°,延长AD交EF于M,连接AC、CF,求出AM=4,FM=2,∠AMF=90°,根据正方形性质求出∠ACF=90°,根据直角三角形斜边上的中线性质求出CHAF,根据勾股定理求出AF即可.
【解答】解:∵正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,
∴AB=BC=1,CE=EF=3,∠E=90°,
延长AD交EF于M,连接AC、CF,
则AM=BC+CE=1+3=4,FM=EF﹣AB=3﹣1=2,∠AMF=90°,
∵四边形ABCD和四边形GCEF是正方形,
∴∠ACD=∠GCF=45°,
∴∠ACF=90°,
∵H为AF的中点,
∴CHAF,
在Rt△AMF中,由勾股定理得:AF2,
∴CH,
故答案为:.
【点评】本题考查了勾股定理,正方形的性质,直角三角形斜边上的中线的应用,解此题的关键是能正确作出辅助线,并求出AF的长和得出CHAF,有一定的难度.
三.解答题(共5小题)
16.(2015 荆州)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.
(1)证明:PC=PE;
(2)求∠CPE的度数;
(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.
【考点】正方形的性质;全等三角形的判定与性质;菱形的性质.
【专题】证明题.
【答案】见试题解答内容
【分析】(1)先证出△ABP≌△CBP,得PA=PC,由于PA=PE,得PC=PE;
(2)由△ABP≌△CBP,得∠BAP=∠BCP,进而得∠DAP=∠DCP,由PA=PC,得到∠DAP=∠E,∠DCP=∠E,最后∠CPF=∠EDF=90°得到结论;
(3)借助(1)和(2)的证明方法容易证明结论.
【解答】(1)证明:在正方形ABCD中,AB=BC,
∠ABP=∠CBP=45°,
在△ABP和△CBP中,

∴△ABP≌△CBP(SAS),
∴PA=PC,
∵PA=PE,
∴PC=PE;
(2)由(1)知,△ABP≌△CBP,
∴∠BAP=∠BCP,
∴∠DAP=∠DCP,
∵PA=PE,
∴∠DAP=∠E,
∴∠DCP=∠E,
∵∠CFP=∠EFD(对顶角相等),
∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,
即∠CPF=∠EDF=90°;
(3)在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,
在△ABP和△CBP中,

∴△ABP≌△CBP(SAS),
∴PA=PC,∠BAP=∠BCP,
∵PA=PE,
∴PC=PE,
∴∠DAP=∠DCP,
∵PA=PC,
∴∠DAP=∠AEP,
∴∠DCP=∠AEP
∵∠CFP=∠EFD(对顶角相等),
∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠AEP,
即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,
∴△EPC是等边三角形,
∴PC=CE,
∴AP=CE.
【点评】本题考查了正方形的性质,全等三角形的判定与性质,菱形的性质,等边对等角的性质,熟记正方形的性质确定出∠ABP=∠CBP是解题的关键.
17.(2015 玉林)如图,在矩形ABCD中,AB=5,AD=3,点P是AB边上一点(不与A,B重合),连接CP,过点P作PQ⊥CP交AD边于点Q,连接CQ.
(1)当△CDQ≌△CPQ时,求AQ的长;
(2)取CQ的中点M,连接MD,MP,MD⊥MP,求AQ的长.
【考点】矩形的性质;全等三角形的判定与性质;勾股定理.
【专题】压轴题.
【答案】见试题解答内容
【分析】(1)根据全等三角形的性质求得DQ=PQ,PC=DC=5,然后利用勾股定理即可求得;
(2)方法1、过M作EF⊥CD于F,则EF⊥AB,先证得△MDF≌△PME,求得ME=DF,然后根据梯形的中位线的性质定理即可求得.
方法2、先利用三角形的外角和∠DMP=90°,得出∠DCP=90°,得出BP=BC=3,再判断出AQ=AP=2即可.
【解答】解:(1)∵△CDQ≌△CPQ,
∴DQ=PQ,PC=DC,
∵AB=DC=5,AD=BC=3,
∴PC=5,
在Rt△PBC中,PB4,
∴PA=AB﹣PB=5﹣4=1,
设AQ=x,则DQ=PQ=3﹣x,
在Rt△PAQ中,(3﹣x)2=x2+12,
解得x,
∴AQ.
(2)方法1,如图2,过M作EF⊥CD于F,则EF⊥AB,
∵MD⊥MP,
∴∠PMD=90°,
∴∠PME+∠DMF=90°,
∵∠FDM+∠DMF=90°,
∴∠MDF=∠PME,
∵M是QC的中点,
∴DMQC,PMQC,
∴DM=PM,
在△MDF和△PME中,

∴△MDF≌△PME(AAS),
∴ME=DF,PE=MF,
∵EF⊥CD,AD⊥CD,
∴EF∥AD,
∵QM=MC,
∴DF=CFDC,
∴ME,
∵ME是梯形ABCQ的中位线,
∴2ME=AQ+BC,即5=AQ+3,
∴AQ=2.
方法2、∵点M是Rt△CDQ的斜边CQ中点,
∴DM=CM,
∴∠DMQ=2∠DCQ,
∵点M是Rt△CPQ的斜边的中点,
∴MP=CM,
∴∠PMQ=2∠PCQ,
∵∠DMP=90°,
∴2∠DCQ+2∠PCQ=90°,
∴∠PCD=45°,°∠BCP=90°﹣45°=45°,
∴∠BPC=45°=∠BCP,∴BP=BC=3,
∵∠CPQ=90°,
∴∠APQ=180°﹣90°﹣45°=45°,
∴∠AQP=90°﹣45°=45°=∠APQ,
∴AQ=AP=2.
【点评】本题考查了矩形的性质,三角形全等的判定和性质,勾股定理的应用,直角三角形斜边中线的性质,梯形的中位线的性质等,(2)求得△MDF≌△PME是本题的关键.
18.(2013 江北区校级模拟)如图,已知 ABCD中,AE平分∠BAD交DC于E,DF⊥BC于F,交AE于G,且AD=DF.过点D作AB的垂线,分别交AE、AB于点M、N.
(1)若M为AG中点,且DM=2,求DE的长;
(2)求证:AB=CF+DM.
【考点】平行四边形的性质;全等三角形的判定与性质.
【专题】压轴题.
【答案】见试题解答内容
【分析】(1)由 ABCD中,AE平分∠BAD交DC于E,DF⊥BC,易证得∠DMG=∠DGM,求得DG=DM=2,由直角三角形斜边上的中线等于斜边上的一半,求得AG的长,继而求得DE的长;
(2)此题有多种解法,通过构造不同的直角三角形,找到相应的全等三角形,在根据对应边和对应角相等,即可推出结论.
【解答】解:(1)∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥CD,
∴∠BAE=∠DEA,
∵AE平分∠BAD,
∴∠DAE=∠DEA,
∴DE=AD,
∵DF⊥BC,
∴DF⊥AD,
∵M为AG中点,
∴AG=2DM=4,
∵DN⊥CD,
∴∠ADM+∠MDG=∠MDG+∠EDG,
∴∠ADM=∠EDG,
∴∠DAE+∠ADM=∠DEA+∠EDG,
即∠DMG=∠DGM,
∴DG=DM=2,
在Rt△ADG中,DE=AD;
(2)证法一:过点A作AD的垂线交DN的延长线于点H,
在△ADH和△FDC中,

∴△DAH≌△DFC(ASA),
∴AH=FC,DH=DC,
∵DF⊥AD,
∴AH∥DF,
∴∠HAM=∠DGM,
∵∠AMH=∠DMG,∠DMG=∠DGM,
∴∠HAM=∠HMA,
∴AH=MH,
∴MH=CF,
∴AB=CD=DH=MH+DM=CF+DM.
证法二:延长MD到点P,使DP=CF,连接PE
由(1)知AD=DE,
又AD=DF,
∴DF=DE,
∠DFC=∠EDP=90°
∴Rt△DCF≌Rt△EPD,
∴DC=EP,∠CDF=∠PED
∴PE∥DF,
∴∠PEA=∠DGA,
由(1)得∠DGA=∠DME,
∴∠PEA=∠DME
∴PM=PE,
而PM=DM+DP=DM+CF,PE=CD=AB,
∴AB=DM+FC.
证法三:过点A作AH⊥CB于点H,
易证△ABH≌△DCF,
从而证得四边形AHFD为正方形.
把△ADG绕点A顺时针旋转90°,
得△AHP,∠AHP=∠AHB=90°
∴P、H、B三点共线
∵AE平分∠BAD,
∴∠1=∠2,而∠2=∠HAP,
∴∠HAB+∠1=∠HAB+∠HAP,即∠HAG=∠PAB
∵AH∥DF,
∴∠HAG=∠DGA
而∠DGA=∠APB
∴∠PAB=∠APB
∴AB=PB
∵PB=PH+HB=DG+FC
∴AB=DM+FC.
证法四:在DC上截取DP=DM,连接PF,
∵四边形ABCD是平行四边形,
∴AB∥CD
∴∠BAE=∠DEA,
而∠BAE=∠DAE,
∴∠DAE=∠DEA DA=DE,
又∠ADF=∠MDE=90°,
∴∠ADM=∠EDG,
∴△ADM≌△EDG,
∴DM=DG,
∴DG=DP,
又AD=DF,
∴DF=DE,而∠PDF=∠FDP,
∴△PDF≌△GDE,
∴∠DPF=∠DGE,∠DFP=∠DEG,
∴∠CPF=∠DGM,
∵∠DFP+∠CFP=∠DEG+∠DMG=90°,
∴∠CFP=∠DMG,
而∠DMG=∠DGM,
∴∠CFP=∠CPF CF=CP,
而CD=DP+CP=DM+CF,AB=CD,
∴AB=DM+CF.
【点评】此题考查了平行四边形的性质、全等三角形的判定、等腰三角形的判定与性质与性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
19.(2018 北京)如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.
(1)求证:GF=GC;
(2)用等式表示线段BH与AE的数量关系,并证明.
【考点】正方形的性质;轴对称的性质;全等三角形的判定与性质.
【专题】证明题.
【答案】见试题解答内容
【分析】(1)如图1,连接DF,根据对称得:△ADE≌△FDE,再由HL证明Rt△DFG≌Rt△DCG,可得结论;
(2)证法一:如图2,作辅助线,构建AM=AE,先证明∠EDG=45°,得DE=EH,证明△DME≌△EBH,则EM=BH,根据等腰直角△AEM得:EMAE,得结论;
证法二:如图3,作辅助线,构建全等三角形,证明△DAE≌△ENH,得AE=HN,AD=EN,再说明△BNH是等腰直角三角形,可得结论.
【解答】证明:(1)如图1,连接DF,
∵四边形ABCD是正方形,
∴DA=DC,∠A=∠C=90°,
∵点A关于直线DE的对称点为F,
∴△ADE≌△FDE,
∴DA=DF=DC,∠DFE=∠A=90°,
∴∠DFG=90°,
在Rt△DFG和Rt△DCG中,
∵,
∴Rt△DFG≌Rt△DCG(HL),
∴GF=GC;
(2)BHAE,理由是:
证法一:如图2,在线段AD上截取AM,使AM=AE,
∵AD=AB,
∴DM=BE,
由(1)知:∠1=∠2,∠3=∠4,
∵∠ADC=90°,
∴∠1+∠2+∠3+∠4=90°,
∴2∠2+2∠3=90°,
∴∠2+∠3=45°,
即∠EDG=45°,
∵EH⊥DE,
∴∠DEH=90°,△DEH是等腰直角三角形,
∴∠AED+∠BEH=∠AED+∠1=90°,DE=EH,
∴∠1=∠BEH,
在△DME和△EBH中,
∵,
∴△DME≌△EBH(SAS),
∴EM=BH,
Rt△AEM中,∠A=90°,AM=AE,
∴EMAE,
∴BHAE;
证法二:如图3,过点H作HN⊥AB于N,
∴∠ENH=90°,
由方法一可知:DE=EH,∠1=∠NEH,
在△DAE和△ENH中,
∵,
∴△DAE≌△ENH(AAS),
∴AE=HN,AD=EN,
∵AD=AB,
∴AB=EN=AE+BE=BE+BN,
∴AE=BN=HN,
∴△BNH是等腰直角三角形,
∴BHHNAE.
【点评】本题考查了正方形的性质,全等三角形的判定定理和性质定理,对称的性质,等腰直角三角形的性质等知识,解决本题的关键是利用正方形的性质得到相等的边和相等的角,证明三角形全等,作出辅助线也是解决本题的关键.
20.(2016 东平县一模)如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.
(1)求证:BD=DF;
(2)求证:四边形BDFG为菱形;
(3)若AG=13,CF=6,求四边形BDFG的周长.
【考点】菱形的判定与性质;全等三角形的判定与性质.
【答案】见试题解答内容
【分析】(1)先可判断四边形BGFD是平行四边形,再由直角三角形斜边中线等于斜边一半,可得BD=FD;
(2)由邻边相等可判断四边形BGFD是菱形;
(3)设GF=x,则AF=13﹣x,AC=2x,在Rt△ACF中利用勾股定理可求出x的值.
【解答】(1)证明:∵∠ABC=90°,BD为AC的中线,
∴BDAC,
∵AG∥BD,BD=FG,
∴四边形BGFD是平行四边形,
∵CF⊥BD,
∴CF⊥AG,
又∵点D是AC中点,
∴DFAC,
∴BD=DF;
(2)证明:∵BD=DF,
∴四边形BGFD是菱形,
(3)解:设GF=x,则AF=13﹣x,AC=2x,
∵在Rt△ACF中,∠CFA=90°,
∴AF2+CF2=AC2,即(13﹣x)2+62=(2x)2,
解得:x=5,
∴四边形BDFG的周长=4GF=20.
【点评】本题考查了菱形的判定与性质、勾股定理及直角三角形的斜边中线的性质;解答本题的关键是证明四边形BGFD是菱形.
21世纪教育网(www.21cnjy.com)

展开更多......

收起↑

资源预览