【中考押题卷】2025年中考数学高频易错考前冲刺:分式方程(含解析)

资源下载
  1. 二一教育资源

【中考押题卷】2025年中考数学高频易错考前冲刺:分式方程(含解析)

资源简介

2025年中考数学复习:分式方程
一.选择题(共10小题)
1.(2005 扬州)若方程1有增根,则它的增根是(  )
A.0 B.1 C.﹣1 D.1和﹣1
2.(2016 潍坊)若关于x的方程3的解为正数,则m的取值范围是(  )
A.m B.m且m
C.m D.m且m
3.(2018 巴中)若分式方程有增根,则实数a的取值是(  )
A.0或2 B.4 C.8 D.4或8
4.(2020 营口模拟)若方程的根为正数,则k的取值范围是(  )
A.k<2 B.﹣3<k<2
C.k≠﹣3 D.k<2且 k≠﹣3
5.(2015 齐齐哈尔)关于x的分式方程有解,则字母a的取值范围是(  )
A.a=5或a=0 B.a≠0 C.a≠5 D.a≠5且a≠0
6.(2014 眉山)甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米.高速公路通车后,某长途汽车的行驶速度提高了45千米/时,从甲地到乙地的行驶时间缩短了一半.设该长途汽车在原来国道上行驶的速度为x千米/时,根据题意,下列方程正确的是(  )
A. B.
C. D.
7.(2019 重庆)若关于x的一元一次不等式组的解集是x≤a,且关于y的分式方程1有非负整数解,则符合条件的所有整数a的和为(  )
A.0 B.1 C.4 D.6
8.(2023秋 纳溪区期末)已知关于x的分式方程1的解是非负数,则m的取值范围是(  )
A.m≥1 B.m≤1 C.m≥﹣1且m≠0 D.m≥﹣1
9.(2014 黔南州)货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是(  )
A. B.
C. D.
10.(2023 绵竹市模拟)若关于x的分式方程无解,则m的值是(  )
A.m=2或m=6 B.m=2 C.m=6 D.m=2或m=﹣6
二.填空题(共5小题)
11.(2018 齐齐哈尔)若关于x的方程无解,则m的值为    .
12.(2023秋 凉州区期末)若关于x的分式方程2有增根,则m的值为   .
13.(2022春 八步区期末)若关于x的方程1无解,则a的值是   .
14.(2024 任城区校级二模)关于x的方程的解是正数,则a的取值范围是    .
15.(2017 攀枝花)若关于x的分式方程3无解,则实数m=   .
三.解答题(共5小题)
16.(2015 贺州)解分式方程:.
17.(2024 江都区二模)为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:
信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;
信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.
根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?
18.(2014 内江)某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.
(1)今年5月份A款汽车每辆售价多少万元?
(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?
(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?
19.(2018 深圳)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.
(1)第一批饮料进货单价多少元?
(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?
20.(2020 黔西南州)随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:
(1)A型自行车去年每辆售价多少元?
(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?
2025年中考数学复习:分式方程
参考答案与试题解析
题号 1 2 3 4 5 6 7 8 9 10
答案 B B D A D D B C C A
一.选择题(共10小题)
1.(2005 扬州)若方程1有增根,则它的增根是(  )
A.0 B.1 C.﹣1 D.1和﹣1
【考点】分式方程的增根.
【专题】压轴题.
【答案】B
【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母(x+1)(x﹣1)=0,所以增根可能是x=1或﹣1.
【解答】解:方程两边都乘(x+1)(x﹣1),得
6﹣m(x+1)=(x+1)(x﹣1),
由最简公分母(x+1)(x﹣1)=0,可知增根可能是x=1或﹣1.
当x=1时,m=3,
当x=﹣1时,得到6=0,这是不可能的,
所以增根只能是x=1.
故选:B.
【点评】求增根只需将最简公分母等于0即可,但有两个或两个以上的增根时需进行检验.
2.(2016 潍坊)若关于x的方程3的解为正数,则m的取值范围是(  )
A.m B.m且m
C.m D.m且m
【考点】分式方程的解.
【答案】B
【分析】直接解分式方程,再利用解为正数列不等式,解不等式得出x的取值范围,进而得出答案.
【解答】解:去分母得:x+m﹣3m=3x﹣9,
整理得:2x=﹣2m+9,
解得:x,
∵关于x的方程3的解为正数,
∴﹣2m+9>0且3
解得:m且m,
故m的取值范围是:m且m.
故选:B.
【点评】此题主要考查了分式方程的解以及不等式的解法,正确解分式方程是解题关键.
3.(2018 巴中)若分式方程有增根,则实数a的取值是(  )
A.0或2 B.4 C.8 D.4或8
【考点】分式方程的增根.
【专题】计算题.
【答案】D
【分析】先把分式方程化为整式方程,确定分式方程的增根,代入计算即可.
【解答】解:方程两边同乘x(x﹣2),得3x﹣a+x=2(x﹣2),
由题意得,分式方程的增根为0或2,
当x=0时,﹣a=﹣4,
解得,a=4,
当x=2时,6﹣a+2=0,
解得,a=8,
故选:D.
【点评】本题考查的是分式方程的增根,增根的定义:在分式方程变形时,有可能产生不适合原方程的根,即代入分式方程后分母的值为0或是转化后的整式方程的根恰好是原方程未知数的允许值之外的值的根,叫做原方程的增根.
4.(2020 营口模拟)若方程的根为正数,则k的取值范围是(  )
A.k<2 B.﹣3<k<2
C.k≠﹣3 D.k<2且 k≠﹣3
【考点】分式方程的解.
【专题】计算题.
【答案】A
【分析】先求出分式方程的解,得出6﹣3k>0,求出k的范围,再根据分式方程有解得出x+3≠0,x+k≠0,求出x≠﹣3,k≠3,即可得出答案.
【解答】解:方程两边都乘以(x+3)(x+k)得:3(x+k)=2(x+3),
3x+3k=2x+6,
3x﹣2x=6﹣3k,
x=6﹣3k,
∵方程的根为正数,
∴6﹣3k>0,
解得:k<2,
∵分式方程的解为正数,
x+3≠0,x+k≠0,
x≠﹣3,k≠3,
即k的范围是k<2,
故选:A.
【点评】本题考查了对分式方程的解的应用,关键是求出6﹣3k>0和得出x≠﹣3,k≠3,题目比较好,但是一道比较容易出错的题目.
5.(2015 齐齐哈尔)关于x的分式方程有解,则字母a的取值范围是(  )
A.a=5或a=0 B.a≠0 C.a≠5 D.a≠5且a≠0
【考点】分式方程的解.
【答案】D
【分析】先解关于x的分式方程,求得x的值,然后再依据“关于x的分式方程有解”,即x≠0且x≠2建立不等式即可求a的取值范围.
【解答】解:,
去分母得:5(x﹣2)=ax,
去括号得:5x﹣10=ax,
移项,合并同类项得:
(5﹣a)x=10,
∵关于x的分式方程有解,
∴5﹣a≠0,x≠0且x≠2,
即a≠5,
系数化为1得:x,
∴0且2,
即a≠5,a≠0,
综上所述:关于x的分式方程有解,则字母a的取值范围是a≠5,a≠0,
故选:D.
【点评】此题考查了求分式方程的解,由于我们的目的是求a的取值范围,根据方程的解列出关于a的不等式.另外,解答本题时,容易漏掉5﹣a≠0,这应引起同学们的足够重视.
6.(2014 眉山)甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米.高速公路通车后,某长途汽车的行驶速度提高了45千米/时,从甲地到乙地的行驶时间缩短了一半.设该长途汽车在原来国道上行驶的速度为x千米/时,根据题意,下列方程正确的是(  )
A. B.
C. D.
【考点】由实际问题抽象出分式方程.
【专题】应用题.
【答案】D
【分析】设该长途汽车在原来国道上行驶的速度为x千米/时,根据“甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米.高速公路通车后,某长途汽车的行驶速度提高了45千米/时,从甲地到乙地的行驶时间缩短了一半”,可列出方程.
【解答】解:设该长途汽车在原来国道上行驶的速度为x千米/时,根据题意得

故选:D.
【点评】本题考查由实际问题抽象出分式方程,关键是设出速度,以时间作为等量关系列方程.
7.(2019 重庆)若关于x的一元一次不等式组的解集是x≤a,且关于y的分式方程1有非负整数解,则符合条件的所有整数a的和为(  )
A.0 B.1 C.4 D.6
【考点】分式方程的解;解一元一次不等式组.
【专题】分式;分式方程及应用;一元一次不等式(组)及应用.
【答案】B
【分析】先解关于x的一元一次不等式组,再根据其解集是x≤a,得a小于5;再解分式方程,根据其有非负整数解,同时考虑增根的情况,得出a的值,再求和即可.
【解答】解:由不等式组得:
∵解集是x≤a,
∴a<5;
由关于y的分式方程1得2y﹣a+y﹣4=y﹣1
∴y,
∵有非负整数解,
∴0,
∴﹣3≤a<5,
a=﹣1(舍,此时分式方程为增根),a=﹣3,a=1,a=3,(a=0,﹣2,2或4时,y不是整数),
它们的和为1.
故选:B.
【点评】本题综合考查了含参一元一次不等式,含参分式方程得问题,需要考虑的因素较多,属于易错题.
8.(2023秋 纳溪区期末)已知关于x的分式方程1的解是非负数,则m的取值范围是(  )
A.m≥1 B.m≤1 C.m≥﹣1且m≠0 D.m≥﹣1
【考点】分式方程的解;解一元一次不等式.
【专题】分式方程及应用.
【答案】C
【分析】由分式方程的解为非负数得到关于m的不等式,进而求出m的范围即可.
【解答】解:分式方程去分母得:m=x﹣1,
即x=m+1,
由分式方程的解为非负数,得到
m+1≥0,且m+1≠1,
解得:m≥﹣1且m≠0,
故选:C.
【点评】此题考查了分式方程的解,在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.
9.(2014 黔南州)货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是(  )
A. B.
C. D.
【考点】由实际问题抽象出分式方程.
【答案】C
【分析】题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.
【解答】解:根据题意,得

故选:C.
【点评】理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.
10.(2023 绵竹市模拟)若关于x的分式方程无解,则m的值是(  )
A.m=2或m=6 B.m=2 C.m=6 D.m=2或m=﹣6
【考点】分式方程的增根.
【专题】分式方程及应用;运算能力.
【答案】A
【分析】分式方程去分母转化为整式方程,由分式方程无解,得到最简公分母为0,求出x的值,代入整式方程求出m的值即可.
【解答】解:去分母得:﹣x﹣m+x(x+2)=(x+2)(x﹣2),
由分式方程无解,得到x=2或x=﹣2,
把x=2代入整式方程得:m=6;
把x=﹣2代入整式方程得:m=2.
故选:A.
【点评】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.
二.填空题(共5小题)
11.(2018 齐齐哈尔)若关于x的方程无解,则m的值为  ﹣1或5或 .
【考点】分式方程的解.
【专题】常规题型.
【答案】见试题解答内容
【分析】直接解方程再利用一元一次方程无解和分式方程无解分别分析得出答案.
【解答】解:去分母得:x+4+m(x﹣4)=m+3,
可得:(m+1)x=5m﹣1,
当m+1=0时,一元一次方程无解,
此时m=﹣1,
当m+1≠0时,
则x±4,
解得:m=5或,
综上所述:m=﹣1或5或,
故答案为:﹣1或5或.
【点评】此题主要考查了分式方程的解,正确分类讨论是解题关键.
12.(2023秋 凉州区期末)若关于x的分式方程2有增根,则m的值为 ﹣1 .
【考点】分式方程的增根.
【答案】见试题解答内容
【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m的值.
【解答】解:方程两边都乘(x﹣3),得
2﹣x﹣m=2(x﹣3)
∵原方程增根为x=3,
∴把x=3代入整式方程,得2﹣3﹣m=0,
解得m=﹣1.
故答案为:﹣1.
【点评】考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.
13.(2022春 八步区期末)若关于x的方程1无解,则a的值是 3或1 .
【考点】分式方程的解.
【答案】见试题解答内容
【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.据此解答可得.
【解答】解:去分母,得:ax=3+x﹣1,
整理,得:(a﹣1)x=2,
当x=1时,分式方程无解,
则a﹣1=2,
解得:a=3;
当整式方程无解时,a=1,
故答案为:3或1.
【点评】本题考查了分式方程的解,分式方程无解的条件,最简公分母为0,或者得到的整式方程无解.
14.(2024 任城区校级二模)关于x的方程的解是正数,则a的取值范围是  a<﹣1且a≠﹣2 .
【考点】分式方程的解;解一元一次不等式.
【答案】见试题解答内容
【分析】先去分母得2x+a=x﹣1,可解得x=﹣a﹣1,由于关于x的方程的解是正数,则x>0并且x﹣1≠0,即﹣a﹣1>0且﹣a﹣1≠1,解得a<﹣1且a≠﹣2.
【解答】解:去分母得2x+a=x﹣1,
解得x=﹣a﹣1,
∵关于x的方程的解是正数,
∴x>0且x≠1,
∴﹣a﹣1>0且﹣a﹣1≠1,解得a<﹣1且a≠﹣2,
∴a的取值范围是a<﹣1且a≠﹣2.
故答案为:a<﹣1且a≠﹣2.
【点评】本题考查了分式方程的解:先把分式方程化为整式方程,解整式方程,若整式方程的解使分式方程左右两边成立,那么这个解就是分式方程的解;若整式方程的解使分式方程左右两边不成立,那么这个解就是分式方程的增根.
15.(2017 攀枝花)若关于x的分式方程3无解,则实数m= 3或7 .
【考点】分式方程的解.
【答案】见试题解答内容
【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.
【解答】解:方程去分母得:7+3(x﹣1)=mx,
整理,得(m﹣3)x=4,
当整式方程无解时,m﹣3=0,m=3;
当整式方程的解为分式方程的增根时,x=1,
∴m﹣3=4,m=7,
∴m的值为3或7.
故答案为3或7.
【点评】本题考查了分式方程无解的条件,是需要识记的内容.
三.解答题(共5小题)
16.(2015 贺州)解分式方程:.
【考点】解分式方程.
【答案】见试题解答内容
【分析】方程两边同时乘以(2x+1)(2x﹣1),即可化成整式方程,解方程求得x的值,然后进行检验,确定方程的解.
【解答】解:原方程即,
两边同时乘以(2x+1)(2x﹣1)得:x+1=3(2x﹣1)﹣2(2x+1),
x+1=6x﹣3﹣4x﹣2,
解得:x=6.
经检验:x=6是原分式方程的解.
∴原方程的解是x=6.
【点评】本题考查的是解分式方程,
(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.
(2)解分式方程一定注意要验根.
17.(2024 江都区二模)为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:
信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;
信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.
根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?
【考点】分式方程的应用.
【专题】工程问题;压轴题.
【答案】见试题解答内容
【分析】如果设甲工厂每天加工x件产品,那么根据乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍,可知乙工厂每天加工1.5x件产品.然后根据等量关系:甲工厂单独加工完成这批产品的天数﹣乙工厂单独加工完成这批产品的天数=10列出方程.
【解答】解:设甲工厂每天加工x件产品,则乙工厂每天加工1.5x件产品,
依题意得10,
解得:x=40.
经检验:x=40是原方程的根,且符合题意.所以1.5x=60.
答:甲工厂每天加工40件产品,乙工厂每天加工60件产品.
【点评】本题考查了分式方程在实际生产生活中的应用.理解题意找出题中的等量关系,列出方程是解题的关键.注意分式方程一定要验根.
18.(2014 内江)某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.
(1)今年5月份A款汽车每辆售价多少万元?
(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?
(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?
【考点】分式方程的应用;一元一次不等式组的应用.
【专题】应用题;压轴题.
【答案】见试题解答内容
【分析】(1)求单价,总价明显,应根据数量来列等量关系.等量关系为:今年的销售数量=去年的销售数量.
(2)关系式为:99≤A款汽车总价+B款汽车总价≤105.
(3)方案获利相同,说明与所设的未知数无关,让未知数x的系数为0即可;多进B款汽车对公司更有利,因为A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,所以要多进B款.
【解答】解:(1)设今年5月份A款汽车每辆售价m万元.则:

解得:m=9.
经检验,m=9是原方程的根且符合题意.
答:今年5月份A款汽车每辆售价9万元;
(2)设购进A款汽车x辆.则:
99≤7.5x+6(15﹣x)≤105.
解得:6≤x≤10.
∵x的正整数解为6,7,8,9,10,
∴共有5种进货方案;
(3)设总获利为W万元,购进A款汽车y辆,则:
W=(9﹣7.5)y+(8﹣6﹣a)(15﹣y)=(a﹣0.5)y+30﹣15a.
当a=0.5时,(2)中所有方案获利相同.
此时,购买A款汽车6辆,B款汽车9辆时对公司更有利.
【点评】本题考查分式方程和一元一次不等式组的综合应用,找到合适的等量关系及不等关系是解决问题的关键.
19.(2018 深圳)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.
(1)第一批饮料进货单价多少元?
(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?
【考点】分式方程的应用;一元一次不等式的应用.
【专题】方程思想;分式方程及应用;一元一次不等式(组)及应用.
【答案】见试题解答内容
【分析】(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据单价=总价÷单价结合第二批饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)设销售单价为m元,根据获利不少于1200元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.
【解答】解:(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,
根据题意得:3 ,
解得:x=8,
经检验,x=8是分式方程的解.
答:第一批饮料进货单价为8元.
(2)设销售单价为m元,
根据题意得:200(m﹣8)+600(m﹣10)≥1200,
解得:m≥11.
答:销售单价至少为11元.
【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,列出关于m的一元一次不等式.
20.(2020 黔西南州)随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:
(1)A型自行车去年每辆售价多少元?
(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?
【考点】分式方程的应用;一元一次不等式的应用;一次函数的应用.
【答案】见试题解答内容
【分析】(1)设去年A型车每辆售价x元,则今年售价每辆为(x﹣200)元,由卖出的数量相同建立方程求出其解即可;
(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利y元,由条件表示出y与a之间的关系式,由a的取值范围就可以求出y的最大值.
【解答】解:(1)设去年A型车每辆售价x元,则今年售价每辆为(x﹣200)元,由题意,得

解得:x=2000.
经检验,x=2000是原方程的根.
答:去年A型车每辆售价为2000元;
(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利y元,由题意,得
y=(2000﹣200﹣1500)a+(2400﹣1800)(60﹣a),
y=﹣300a+36000.
∵B型车的进货数量不超过A型车数量的两倍,
∴60﹣a≤2a,
∴a≥20.
∵y=﹣300a+36000.
∴k=﹣300<0,
∴y随a的增大而减小.
∴a=20时,y有最大值,
∴B型车的数量为:60﹣20=40(辆).
∴当新进A型车20辆,B型车40辆时,这批车获利最大.
【点评】本题考查了列分式方程解实际问题的运用,分式方程的解法的运用,一次函数的解析式的运用,解答时由销售问题的数量关系求出一次函数的解析式是关键.
21世纪教育网(www.21cnjy.com)

展开更多......

收起↑

资源预览