浙江省温州市乐清市2025年5月中考二模数学试卷(PDF版,含答案)

资源下载
  1. 二一教育资源

浙江省温州市乐清市2025年5月中考二模数学试卷(PDF版,含答案)

资源简介

乐清市/瓯海区/永嘉县/苍南县
{#{QQABCYCl4wCQklRACB5aVQUOCAkQsICQLeoGgVCeuARCwAFIFAA=}#}
{#{QQABCYCl4wCQklRACB5aVQUOCAkQsICQLeoGgVCeuARCwAFIFAA=}#}
{#{QQABCYCl4wCQklRACB5aVQUOCAkQsICQLeoGgVCeuARCwAFIFAA=}#}
{#{QQABCYCl4wCQklRACB5aVQUOCAkQsICQLeoGgVCeuARCwAFIFAA=}#}
{#{QQABCYCl4wCQklRACB5aVQUOCAkQsICQLeoGgVCeuARCwAFIFAA=}#}
{#{QQABCYCl4wCQklRACB5aVQUOCAkQsICQLeoGgVCeuARCwAFIFAA=}#}
2025 年九年级第二次学生素养检测(数学卷)
参考答案和评分标准
一、选择题(本题有 10小题,每小题 3分,共 30分.每小题只有一个选项是正确的,不选、多选、错
选,均不给分)
题号 1 2 3 4 5 6 7 8 9 10
答案 A B B C D C A A C D
二、填空题(本题共 6小题,每小题 3分,共 18分)
11 2. 12. 1 x 6 13.AB=AC 3(或∠B=∠C,答案不唯一) 14. 15.2 2 16.2 10
5 4
三、解答题(本题有 8小题,共 72分,解答需写出必要的文字说明、演算步骤或证明过程)
17.(本题 8分)
解:原式 2 1 2 ··············································································(6分)
3 ······················································································ (2分)
18.(本题 8分)
解:(1)小明的解法:①错误; 小红的解法:②错误.·······················(2分)
4 a 2
原式= ························································(1分)
a 2 a 2 a 2 a 2
4 a 2
= ············································································(1分)
a 2 a 2
2 a
= ············································································(1分)
a 2 a 2
= 1 ······················································································(1分)
a 2
当 a 1时,原式= 1 = 1 = 1 ················································(2分)
a 2 1 2 3
19.(本题 8分)
4
解:(1)∵∠ACB=90°,AB=10,cosB= ,
5
∴ BC AB cosB 8.
在 Rt△ABC中, AC AB2 BC2 102 82 6.···················· (4分)
(2)∵DE垂直平分 AB,
∴AE=BE.
设 CE=x,则 AE=BE=8 x ,
在 Rt△ACE中, AE2 AC2 CE2 ,
∴ 8 x 2 62 7 x2 ,解得 x ,
4
7
∴tan∠CAE= CE 7 4 .····················································(4分)
AC 6 24
20.(本题 8分)
5 6 7 7 8 8 8 9 10 10
解:(1)甲平均成绩: =7.8(环)···············(2分)
10
甲中位数:8环;甲众数:8环··················································(2分)
(平均成绩的计算过程、结果各一分,中位数、众数各一分)
(2)挑选甲,理由如下:
根据折线统计图的趋势看,甲状态持续上升;·······························(2分)
甲射击成绩方差小于乙射击成绩方差,说明甲比乙更稳定;············ (2分)
或挑选乙,理由如下:
乙射击成绩众数高于甲射击成绩,说明乙的高分成绩数量多;········· (2分)
乙方差虽大于甲方差,但 9 环及以上占比 50%,甲占比 30%,说明乙爆发力强,适合选拔
参与比赛。············································································ (2分)
(选甲与乙均可得满分,但至少需两个正确判断如上,每个判断 2分)
21.(本题 8分)
解:(1)由作图可知:OA=OB,OP=OQ,

∴∠OAB=∠OBA=180 O;
2

∠OPQ=∠OQP= 180 O,
2
∴∠OAB=∠OPQ,
∴PQ∥l.·············································································(4分)
(2)作图如下:
···················································(4分)
22.(本题 10分)
解:(1)由图可知加热时,y关于 x的函数为一次函数,
∴可设解析式为 y kx b,
将点(0,30)(10,60)代入,得
b 30, k 3,
解得
10k b 60

. b 30.
∴y关于 x的函数解析式为 y 3x 30.
当 y=90时,3x 30 90,解得 x 20.
∴第一次加热到 90°时间为 20分钟.··············································(3分)
(2 m)由题意可设加热后 y关于 x的表达式为 y ,
x
将(20,90)代入,得m 1800,
∴y关于 x 1800的表达式为 y ······················································(3分)
x
(3)由题意可知,加热时长为 10分钟.
恒温阶段8 60 10 470分钟,
费用为:10 100 470 60 29200元.
1800
间歇加热工作:对于 y ,令 y 60,得 x 30,
x
除第一次加热到 60℃需要 10分钟,后续 60℃加热到 90℃,自然降温到 60℃一轮需要 20分
钟.一天 8小时中,加热时间为10 23 10 10 250分钟,
费用为: 250 100 25000元.
25000 29200,因此仅从可工作时间和加热成本考虑,间歇加热工作更节约成本.
······························································································(4分)
23.(本题 10分)
解:(1)方法一:
由题意可知(0,n),(4,n)关于对称轴直线 x a对称,
0 4
∴ a 2,
2
∴该二次函数的解析式为 y x2 4x 1.
方法二:
将(0,n),(4,n)代入,得
a 1 n, a 2,
解得
16 8a a 1 n

. n 1.
∴该二次函数的解析式为 y x2 4x 1.··········································(4分)
2 图 1
(2)由判别式Δ= 2a 4 a 1 4a2 4a 4 2a 1 2 3 3 0,
∴二次函数的图象与 x轴都有两个交点.·····································(3分)
(3)如图 1,
(Ⅰ)若 a 3时,当 x 3时,函数有最小值为9 6a a 1 3,
解得 a 11 (舍去);····························································(1分)
5
如图 2,
(Ⅱ)若 a 0时,当 x 0时,函数有最小值为 a 1 3, 图 2
解得 a 2;·········································································(1分)
如图 3,
(Ⅲ)若 0 a 3 2 2时,当 x a时,函数有最小值为 a 2a a 1 3,
解得 a1 2, a2 1(舍去),··················································(1分)
∴综上所述满足条件的 a的值为 2.
图 3
24.(本题 12分)
解:(1)如图 4
∵OC平分∠ACB,
∴∠1=∠2.·····················································(1分)
∵OC=OB,
∴∠2=∠4.·············································(1分)
∵∠4=∠3,·············································(1分)
∴∠1=∠3,
∴OC∥EF.··········································································(1分) 图 4
(2)①由(1)可设∠ADF=∠3=∠1=∠2=x,
设∠A=y,
∴∠EFB=∠A+∠ADF=x+y.····················································(1分)
∵∠E=∠DCB,
∴∠E=2x,···········································································(1分)
∵∠EBF=2∠A=2y,
∴在△BEF中,∠E+∠EFB+∠EBF=180°,即 2x x y 2y 180 ,(1分)
∴ x y 60 ,即∠EFB=60°.··············································· (1分)
②方法一:如图 5
连结 BD,延长 CO交 BD于点 R,交 AB于点 N,
设 DF=m,
∵BE是⊙O的直径,
∴∠BDE=90°,即 BD⊥EF.
∵∠EFB=60°,∴BF=2DF=2m.
∵OC∥EF,∴CO⊥BD,
图 5
∴DR=BR,∴FN=BN,∴NR= 1 DF m .
2 2
2
∵F是 AB的中点,∴AF= AN ,
3
CN= 3 DF 3m∴ ,∴CR=CN-NR= m,
2 2
∴OR=m-1.
3m
∵BR= ,∴在 Rt△BOR中,OR2 BR2 OB2 ,
2
2

即 m 1 2 3m 8 1,解得m1 ,m2 0(舍去),
2 7
∴AB= 4m 4 8 32 .·······················································(4分)
7 7
方法二:如图 6
连结 BD,作 BM∥EF交 DC的延长线于点 M,设 DF=m,
∵BE是⊙O的直径,
∴∠BDE=90°,即 BD⊥EF.
∵∠EFB=60°,∴BF=2DF=2m.BD= 3m.
∵BM∥EF,F是 AB的中点,
∴BM=2DF=2m,∠DBM=∠BDF=90°,
∴DM= 7m.
∵OC∥EF,∴OC∥BM,
∴∠1=∠M,∠2=∠5, 图 6
∵∠1=∠2,∴∠M=∠5,
∴BC=CM= 1 DM 7 m,
2 2
∵∠2=∠4=∠5=∠M,∴△OBC∽△CBM,
7
OC BC 1 m 8
∴ ,∴ 2 ,解得m ,
BC BM 7 2m 7m
2
∴AB= 4m 4 8 32 .·······················································(4分)
7 7

展开更多......

收起↑

资源预览