2024-2025学年北师大版数学八年级下册第五章分式与分式方程实际问题(含答案)

资源下载
  1. 二一教育资源

2024-2025学年北师大版数学八年级下册第五章分式与分式方程实际问题(含答案)

资源简介

2024-2025学年北师大版数学八年级下册第五章分式与分式方程实际问题
一、单选题
1.有一个容积为24的圆柱形的空油罐,用一根细油管向油罐内注油,当注油量达到该油罐容积的一半时,改用一根口径为细油管口径2倍的粗油管向油罐注油,直至注满,注满油的全过程共用30分钟,设细油管的注油速度为每分钟x,由题意列方程,正确的是( )
A. B. C. D.
2.某运输公司,运送一批货物,甲车每天运送货物总量的.在甲车运送1天货物后,公司增派乙车运送货物,两车又共同运送货物天,运完全部货物.求乙车单独运送这批货物需多少天?设乙车单独运送这批货物需天,由题意列方程,正确的是( )
A. B.
C. D.
3.某乡镇对公路进行补修,甲工程队计划用若干天完成此项目,甲工程队单独工作了3天后,为缩短完成的时间,乙工程队加入此项目,且甲、乙工程队每天补修的工作量相同,结果提前3天完成,则甲工程队计划完成此项目的天数是( )
A.6 B.7 C.8 D.9
4.为推进垃圾分类,推动绿色发展.某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用万元购买甲型机器人和用万元购买乙型机器人的台数相同,两型号机器人的单价和为万元.若设甲型机器人每台万元,根据题意,所列方程正确的是(  )
A. B.
C. D.
5.张老师和李老师住在同一个小区,离学校3000米,某天早晨,张老师和李老师分别于7点10分、7点15分离家骑自行车上班,刚好在校门口遇上,已知李老师骑车的速度是张老师的1.2倍,为了求他们各自骑自行车的速度,设张老师骑自行车的速度是x米/分,则可列得方程为
A. B.
C. D.
6.某农场开挖一条长480米的渠道,开工后每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x米,那么下列方程中正确的是( )
A. B. C. D.
二、填空题
7.某车间加工12个零件后,采用新工艺,工效比原来提高了50%,这样加工同样多的零件就少用1小时,那么采用新工艺前每小时加工 个零件.
8.现有甲、乙两种糖混合而成的什锦糖50千克,两种糖的千克数和单价如下表.
甲种糖果 乙种糖果
千克数 20 30
单价(元/千克) 25 15
商店以糖果的平均价格作为什锦糖的单价,要使什锦糖的单价每千克提高1元,需加入甲种糖 千克.
9.为了美化环境,某地政府计划对辖区内60km2的土地进行绿化,为了尽快完成任务,实际平均每月的绿化面积是原计划的1.5倍,结果提前2个月完成任务,求原计划平均每月的绿化面积.甲同学所列的方程为,则甲同学所列方程中的x表示 .
10.为了改善生态环境,防止水土流失,某村计划在荒坡上种树480棵.由于青年志愿者的支援,每天比原计划多种10棵,结果提前4天完成任务.设原计划每天种x棵树,则根据题意可列方程为 .
11.某商场分别用2000元和2400元购进相同数量的甲、乙两种商品,已知乙种商品每件进价比甲种商品每件进价多8元,则甲种商品每件进价为 元;
12.某天运动员小伟沿平路从家步行去银行办理业务,到达银行发现没有带银行卡(停留时间忽略不计),立即沿原路跑回家,已知平路上跑步的平均速度是平路上步行的平均速度的4倍,已知小伟家到银行的平路距离为2800米,小伟从离家到返回家共用50分钟.则小伟在平路上跑步的平均速度是每分钟 米.
三、解答题
13.联系实际编拟一道关于分式方程的应用题,要求表述完整,条件充分并写出解答过程.
14.某质检部门抽取甲 乙两厂相同数量的产品进行质量检测,结果甲厂有48件合格产品,乙厂有45件合格产品,甲厂的合格率比乙厂高,求甲厂的合格率.
15.为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成,需支付运费4800元.已知甲、乙两车单独运完此堆垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元.
(1)求甲、乙两车单独运完此堆垃圾各需运多少趟?
(2)若单独租用一台车,租用哪台车合算?
16.为了提高广大职工对消防知识的学习热情,增强职工的消防意识,某单位工会决定组织消防知识竞赛活动,本次活动拟设一、二等奖若干名,并购买相应奖品.现有经费1275元用于购买奖品,且经费全部用完,已知一等奖奖品单价与二等奖奖品单价之比为4∶3.当用600元购买一等奖奖品时,共可购买一、二等奖奖品25件.
(1)求一、二等奖奖品的单价;
(2)若购买一等奖奖品的数量不少于4件且不超过10件,则共有哪几种购买方式?
17.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天.
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?
(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?
18.为进一步落实中小学生“作业、睡眠、手机、读物、体质”五项管理工作,某学校以增强“体质”为突破口,准备从体育用品商场一次性购买若干个排球和篮球,让学生利用课余时间参加排球、篮球等项目的训练活动.每个排球的价格都相同,每个篮球的价格也相同.已知每个篮球的价格是每个排球的价格的1.5倍;用1800元单独购买排球或篮球,购买排球的数量比购买篮球的数量多10个.
(1)每个排球的价格和每个篮球的价格分别是多少元?
(2)根据学校实际情况,需一次性购买排球和篮球共300个,但要求排球和篮球的总费用不超过20000元,学校最多可以购买多少个篮球?
19.金师傅近期准备换车,看中了价格相同的两款国产车.
燃油车 油箱容积:升 油价:元升 续航里程:千米 每千米行驶费用:元 新能源车 电池电量:千瓦时 电价:元千瓦时 续航里程:千米 每千米行驶费用:_____元
(1)用含的代数式表示新能源车的每千米行驶费用.
(2)若燃油车的每千米行驶费用比新能源车多元.
分别求出这两款车的每千米行驶费用.
若燃油车和新能源车每年的其它费用分别为元和元.问:每年行驶里程为多少千米时,买新能源车的年费用更低?年费用年行驶费用年其它费用
参考答案
1.A
2.B
3.D
4.A
5.A
6.C
7.4
8.10
9.实际完成这项工程需要的月数
10.
11.40
12.280
13.
(1)所编写应用题如下:
某工厂要生产一批零件150个,先由甲单独做1天,剩下的由乙来做,乙做完剩下部分零件所用的时间比甲单独做完150个零件所用的时间还少两天;已知乙的工作效率是甲工作效率的2倍,问甲每天做多少个零件
(2)解:设甲每题作x个零件,根据题意得:

去分母得:,
解得:,
经检验:是所列方程的根,且符合实际意义.
答:甲每天做50个零件.
14.解:设甲厂产品的合格率为x%,则乙厂产品的合格率为(x-5)%,
根据题意,得,
解得:x=80,
经检验:x=80是原方程的根且符合题意,
答:甲厂产品的合格率为80%.
15.解:(1)设甲车单独运完此堆垃圾需运x趟,则乙车单独运完此堆垃圾需运2x趟,根据题意得出:

解得:x=18,则2x=36.
经检验得出:x=18是原方程的解.
答:甲车单独运完需18趟,乙车单独运完需36趟;
(2)设甲车每一趟的运费是a元,由题意得:
12a+12(a﹣200)=4800,
解得:a=300.
则乙车每一趟的费用是:300﹣200=100(元),
单独租用甲车总费用是:18×300=5400(元),
单独租用乙车总费用是:36×100=3600(元).
∵3600<5400,故单独租用一台车,租用乙车合算.
16.解:(1)设一、二等奖奖品的单价分别是4x,3x,
由题意得:,解得:x=15,
经检验:x=15是方程的解,且符合题意,
∴15×4=60(元),15×3=45(元),
答:一、二等奖奖品的单价分别是60元,45元;
(2)设购买一等奖品的数量为m件,则购买二等奖品的数量为件,
∵4≤m≤10,且为整数,m为整数,
∴m=4,7,10,
答:共有3种购买方案,分别是:一等奖品数4件,二等奖品数23件;一等奖品数7件,二等奖品数19件;一等奖品数10件,二等奖品数15件.
17.解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:
解得:x=50,
经检验x=50是原方程的解,
则甲工程队每天能完成绿化的面积是50×2=100(m2),
答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;
(2)设应安排甲队工作y天,根据题意得:
0.4y+×0.25≤8,
解得:y≥10,
答:至少应安排甲队工作10天.
18.(1)解:设每个排球元,则每个篮球元,

解得,
经检验,是原方程的解,且符合题意,

即每个排球60元,则每个篮球90元;
(2)解:设可以购买个篮球,
解得,
即最多可以购买66个篮球.
19.(1)解:由表格可得,
新能源车的每千米行驶费用为:(元),
即新能源车的每千米行驶费用为元;
(2)解:①∵燃油车的每千米行驶费用比新能源车多元,

解得:,
经检验,是原分式方程的解,
,,
答:燃油车的每千米行驶费用为元,新能源车的每千米行驶费用为元;
设每年行驶里程为,
由题意得:,
解得,
答:当每年行驶里程大于时,买新能源车的年费用更低.

展开更多......

收起↑

资源预览