人教版2024—2025学年七年级下册数学期末考试模拟试卷(含答案)

资源下载
  1. 二一教育资源

人教版2024—2025学年七年级下册数学期末考试模拟试卷(含答案)

资源简介

中小学教育资源及组卷应用平台
人教版2024—2025学年七年级下册数学期末考试模拟试卷
考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟
注意事项:
1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。笞卷前,考生务必
将自己的姓名、准考证号填写在答题卡上。
2.回答第I卷时,选出每小题答案后,把答案填写在答题卡上对应题目的位置
,填空题填写在答题卡相应的位置写在本试卷上无效。
3.回答第II卷时,将答案写在第II卷答题卡上。
4.考试结束后,将本试卷和答题卡一并交回。
第I卷
一、选择题(每题只有一个正确选项,每小题3分,满分30分)
1.在平面直角坐标系中,点(2,﹣1)所在的象限是(  )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.下列图形中,由∠1=∠2能判定AB∥CD的是(  )
A. B. C. D.
3.下列各数中,无理数是(  )
A. B. C. D.0
4.若方程组的解为,则a+b的值为(  )
A.1 B.﹣1 C.3 D.﹣3
5.为说明命题“若a>b,则a2>b2”是假命题,所列举反例正确的是(  )
A.a=5,b=3 B.a=﹣1,b=﹣2
C.a=2,b=1 D.a,b
6.为了调查我市某校学生的视力情况,在全校的2000名学生中随机抽取了300名学生,下列说法正确的是(  )
A.此次调查属于全面调查
B.样本容量是300
C.2000名学生是总体
D.被抽取的每一名学生称为个体
7.已知:0.71,2.24,7.1,22.4,请根据以上规律得到的结果(  )
A.0.071 B.0.224 C.0.025 D.0.0224
8.为了“践行垃圾分类 助力双碳目标”的活动,学校的小亮和小芬一起收集了一些废电池,小亮说:“我比你多收集了5节废电池.”小芬说:“如果你给我6节废电池,此时我的废电池数量就是你的2倍.”如果他们说的都是真的,设小亮收集了m节废电池,小芬收集了n节废电池,根据题意可列方程组为(  )
A. B.
C. D.
9.已知直线MN∥x轴,M点的坐标为(2,3),并且线段MN=3,则点N的坐标为(  )
A.(﹣1,3) B.(5,3)
C.(1,3)或(5,3) D.(﹣1,3)或(5,3)
10.关于x的不等式组的解集中仅有﹣1和0两个整数解,且10a=2m+5,则m的取值范围是(  )
A.﹣2.5<m≤2.5 B.﹣2.5≤m≤2.5
C.0<m≤2.5 D.2<m≤2.5
二、填空题(6小题,每题3分,共18分)
11.若(m﹣2)x|m﹣1|﹣3>6是关于x的一元一次不等式,则m=  .
12.若关于x的不等式组的解集是x>2,则m的取值范围是    .
13.七年(1)班学习委员调查本班学生一周内课外阅读情况,按照课外阅读时间进行统计,结果如表:
阅读时间 2小时以下 2﹣4小时 4小时以上
人数/名 25 15 a
百分比 b 30% 20%
则表中a的值是   .
14.如图,已知AB∥DE,∠ABC=75°,∠CDE=150°,则∠BCD的度数为     .
15.定义新运算:对于任意实数a,b都有a※b=am﹣bn,等式右边是通常的减法和乘法运算,规定,若3※2=5,1※(﹣2)=﹣1,则(﹣3)※2的值为     .
16.若方程组的解是,则方程组的解是     .
第II卷
人教版2024—2025学年七年级下册数学期末考试模拟试卷
姓名:____________ 学号:____________准考证号:___________
一、选择题
题号 1 2 3 4 5 6 7 8 9 10
答案
二、填空题
11、_______ 12、______13、_______ 14、______15、_______ 16、______
三、解答题解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)
17.解不等式组:,将其解集在数轴上表示出来,并写出所有的整数解.
18.解二元二次方程组
(1);(2).
19.计算求值:
(1)计算:;
(2)已知(x﹣1)2﹣9=0,求x的值.
20.“读书,点亮未来”,广泛的课外阅读是同学们搜集和汲取知识的一条重要途径.学校图书馆计划购进一批学生喜欢的图书,为了了解学生们对“A文史类、B科普类、C生活类、D其它”的喜欢程度,随机抽取了部分学生进行问卷调查(每个学生只选其中一类),将所得数据进行分类统计绘制了不完整的统计图表,请根据图中的信息,解答下列问题:
统计表:
频数 频率
A文史类 50 m
B科普类 90 0.45
C生活类 n 0.20
D其它 20 0.10
合计
(1)本次调查的学生共    人;
(2)m=   ,n=   ;
(3)补全条形统计图.
21.学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需130元;购买5个A奖品和4个B奖品共需230元.
(1)求A,B两种奖品的单价;
(2)学校准备购买A,B两种奖品共40个,且A奖品的数量不少于B奖品数量的.购买预算金不超过920元,请问学校有几种购买方案.
22.如图1,点F在线段AB上,点E在线段CD上,∠1+∠2=180°,∠A=∠D.
(1)试说明:AB∥CD;
(2)如图2所示,延长AB到M,在∠MBC,∠BCD内部有一点P,连接BP,CP.若∠CBP=3∠MBP,∠BCP=3∠DCP,求∠BPC的度数.
23.如果点P(x,y)的坐标满足
(1)求点P的坐标.(用含m,n的式子表示x,y)
(2)如果点P在第二象限,且符合要求的整数只有两个,求n的范围.
(3)如果点P在第二象限,且所有符合要求的整数m之和为9,求n的范围.
24.已知:如图,AR∥CD,点B为CD上一点,∠A=∠C.
(1)如图1,求证:AB∥CR;
(2)如图2,点E为线段CR上一点,∠DBE的角平分线与∠ARC的角平分线相交于点H,请直接写出∠BHR与∠BER的数量关系,不必写出证明过程;
(3)如图3,在(2)的条件下,连接BR,且BR平分∠ABE,延长BE交AR的延长线于点F,过点F作FG⊥AF交线段BC于点G,FP平分∠BFG交线段HB的延长线于点P,若∠HRC=5∠HBR,∠BHR﹣2∠HPF=47°,求∠HRB的度数.
25.我们定义:使方程(组)与不等式(组)同时成立的未知数的值称为此方程(组)和不等式(组)的“梦想解”.
例:已知方程2x﹣3=1与不等式x+3>0,方程的解为x=2,使得不等式也成立,则称“x=2”为方程2x﹣3=1和不等式x+3>0的“梦想解”
(1)已知①,②2(x+3)<4,③,试判断方程2x+3=1解是否为它与它们中某个不等式的“梦想解”;
(2)若关于x,y的二元一次方程组的解是不等式组的梦想解,且m为整数,求m的值.
(3)若关于x的方程x+4=3m的解是关于x的不等式组的“梦想解”,且此时不等式组有7个整数解,试求m的取值范围.
参考答案
一、选择题
1—10:BBCABBAADA
二、填空题
11.【解答】解:根据题意,得
|m﹣1|=1且m﹣2≠0,
解得,m=0.
故答案为:0.
12.【解答】解:解x﹣1>1,得:x>2,
∵不等式组的解集是x>2,
∴m≤2,
故答案为:m≤2.
13.【解答】解:总人数为15÷30%=50(人),
∴a=50×20%=10.
故答案为:10.
14.【解答】解:反向延长DE交BC于M,
∵AB∥DE,
∴∠BMD=∠ABC=75°,
∴∠CMD=180°﹣∠BMD=105°;
又∵∠CDE=∠CMD+∠BCD,
∴∠BCD=∠CDE﹣∠CMD=150°﹣105°=45°.
故答案为:45°.
15.【解答】解:因为a※b=am﹣bn,
3※2=5,1※(﹣2)=﹣1,
所以,
①+②得:4m=4,m=1,
将m=1代入①得:n=﹣1,
方程的解为:,
(﹣3)※2
=(﹣3)×1﹣2×(﹣1)
=﹣3+2
=﹣1.
故答案为:﹣1.
16.【解答】解:设,则方程组可变为,
∵方程组的解是,
∴方程组的解为,

解得:.
故答案为:.
三、解答题
17.【解答】解:解不等式①得x≤3,
解不等式②得x>﹣1,
所以不等式组的解集为﹣1<x≤3,
解集在数轴上表示为:
不等式组的整数解为0,1,2,3.
18.【解答】解:(1),
①+2×②得,13x=39,
解得,x=3,
将x=3代入①得,9+2y=9,
解得,y=0,
∴;
(2),
①×2+②得,5x=25,
解得,x=5,
将x=5代入①得,5﹣2y=1,
解得,y=2,
∴.
19.【解答】解:(1)原式=﹣1﹣351=0;
(2)(x﹣1)2﹣9=0,
(x﹣1)2=9,
x﹣1=±3,
x1=4,x2=﹣2.
20.【解答】解:(1)20÷0.10=200(人),
故答案为:200;
(2)m=50÷200=0.25,n=200×0.20=40,
故答案为:0.25,40;
(3)补全条形统计图如下,
21.【解答】解:(1)设A种奖品的单价为x元,B种奖品的单价为y元,
依题意,得:,
解得:.
答:A种奖品的单价为30元,B种奖品的单价为20元.
(2)设购买A种奖品m个,则购买B种奖品(40﹣m)个,
依题意,得:,
解得:10≤m≤12.
∵m为整数,
∴m=10,11,12,
∴40﹣m=30,29,28.
∴学校有三种购买方案,方案一:购买A种奖品10个,B种奖品30个;方案二:购买A种奖品11个,B种奖品29个;方案三:购买A种奖品12个,B种奖品28个.
22.【解答】解:(1)如图:
∵∠2+∠3=180°,∠1+∠2=180°,
∴∠1=∠3,
∴AE∥DF,
∴∠A=∠BFD,
∵∠A=∠D,
∴∠D=∠BFD,
∴AB∥CD;
(2)∵AM∥CD,
∴∠MBC+∠DCB=180°,
∵∠CBP=3∠MBP,∠BCP=3∠DCP,
∴∠CBP∠MBC,∠BCP∠DCB,
∴∠CBP+∠BCP∠MBC∠DCB=135°,
∴∠BPC=180°﹣(∠CBP+∠BCP)=45°.
23.【解答】解:(1)∵解方程组得,,
∴(m﹣5,m﹣n);
(2)∵点P在第二象限,且符合要求的整数只有两个,
由,得n<m<5
∴2≤n<3
(3)∵点P在第二象限,且符合要求的整数之和为9,
由,得n<m<5
∴m的整数值为﹣1,0,1,2,3,4或2,3,4
∴﹣2≤n<﹣1或1≤n<2.
24.【解答】(1)证明:∵AR∥CD,
∴∠A=∠ABD,
∵∠A=∠C,
∴∠C=∠ABD,
∴AB∥CR;
(2)解:2∠BHR+∠BER=360°,理由如下:
如图:分别过点E,H作AR的平行线PQ,MN,
∵AR∥CD,AR∥PQ,AR∥MN,
∴AR∥MN∥PQ∥CD,
设∠ABD=x,∠ABH=y,则∠HBD=x+y,
∴∠C=x,∠BHN=x+y,
∴∠ARC=180°﹣x,∠PER=x,
∵BH平分∠DBE,RH平分∠ARC,
∴,
∴,
∴∠BEP=∠CBE=180°﹣2x﹣2y,
∴∠BEP=∠CBE=180°﹣2x﹣2y
∴,
∵2∠BHR=180°+x+2y,
∴2∠BHR+∠BER=180°+x+2y+180°﹣x﹣2y=360°;
(3)解:设∠HBR=α,∠ABH=β,则∠ABR=α+β,
∵BR平分∠ABE,
∴∠EBR=∠ABR=α+β,
∴∠HBE=∠HBR+∠EBR=2α+β,
∵BH平分∠DBE,
∴∠DBH=∠HBE=2α+β,
∴∠ABD=∠DBH﹣∠ABH=2α,
∴∠C=∠ABD=2α,
∵∠HRC=5∠HBR,
∴∠HRC=5α,
∵RH平分∠ARC,
∴∠ARH=∠HRC=5α,
∴∠CRF=180°﹣10α,
∵AR∥CD,
∴∠C=∠CRF,即2α=180°﹣10α,
∴α=15°,
∴∠C=∠CRF=30°,∠ARH=∠HRC=5α=75°,∠CBE=180°﹣2∠DBH=180°﹣4α﹣2β=120°﹣2β,
∴∠C=∠CRF=30°,
如图,过点P作PK∥CD,过点H作ST∥CD,
∴∠DBH=∠THB=2α+β=30°+β,∠THR=∠ARH=75°,
∴∠BHR=∠DBH+∠ARH=7α+β=105°+β,
∵∠CBH=180°﹣∠DBH=180°﹣2α﹣β=150°﹣β,
∴∠KPB=∠CBH=150°﹣β,
∵FG⊥AF,
∴∠AFG=90°,
∵AR∥CD,
∴∠CBE=∠AFB=120°﹣2β,
∴∠BFG=∠AFG﹣∠AFB=90°﹣(120°﹣2β)=2β﹣30°,
∵FP平分∠BFG,
∴,
∵AR∥CD,PK∥CD,
∴AR∥PK,
∴∠KPF=∠AFP=∠AFB+∠PFB=105°﹣β,
∴∠HPF=∠KPB﹣∠KPF=45°,
∵∠BHR﹣2∠HPF=47°,
∴105°+β﹣2×45°=47°,
∴β=32°,
∴∠DBR=∠DBH+∠HBR=2α+β+α=77°,
∴∠ARB=180°﹣∠DBR=180°﹣77°=103°,
∵∠ARH=75°,
∴∠HRB=∠ARB﹣∠ARH=103°﹣75°=28°,
所以∠HRB的度数为28°.
25.【解答】解:(1)解方程2x+3=1得x=﹣1,
解①得:x>2,故方程2x+3=1不是①的“梦想解”;
解②得:x<﹣1,故方程2x+3=1不是②“梦想解”;
解③得:x<7,故方程2x+3=1是③的“梦想解”;
故答案为:③
(2)解方程
得:
∴x+y=2m﹣31
∵解是不等式组的梦想解
∴﹣5<2m﹣31<1
∴13<m<16
∵m为整数,
∴m为14或15;
(3)解不等式组得:m﹣1<x≤3m+1,
∵不等式组的整数解有7个,
令整数的值为n,n+1,n+2,n+3,n+4,n+5,n+6
则有:n﹣1≤m﹣1<n,n+6≤3m+1<n+7.
故,
∴且,
∴1<n<3,
∴n=2,
∴,
∴,
解方程x+4=3m得:x=3m﹣4,
∵方程x+4=3m是关于x的不等式组的“梦想解”,
∴,
解得,
综上m的取值范围是.
21世纪教育网(www.21cnjy.com)

展开更多......

收起↑

资源预览