资源简介 R姓名 准考证号 5. 如图,在△ABC 中,BD 是 AC 边上的高,CE 是∠ACB 的平分线,BD,CE 交于点 F. 若∠AEC = 80°,∠DFC = 52°,则∠ABC的度数是2025年山西初中学业水平测试靶向联考试卷(二) A. 28° B. 38° C. 42° D. 62°A D C数 学 E FF DG注意事项: B C A B1. E本试卷共8页,满分120分,考试时间120分钟 . 第5题图 第7题图2. 答卷前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置 . 6. 考古学家们破译了玛雅人的天文历,其历法非常精确 .他们计算的地球一年天数与3. 答案全部在答题卡上完成,答在本试卷上无效 . 现代相比仅差0.000 069天 .将0.000 069用科学记数法表示为4. - 4 - 5考试结束后,将本试卷和答题卡一并交回 . A. 0.69 × 10 B. 6.9 × 10C. 6.9 × 10 - 4 D. 69 × 10 - 6第Ⅰ卷 选择题(共30分) 7. 如图,在正方形ABCD中R,点E在AB边上,连接CE,过点D作DF ⊥ CE于点F,过点B一、选择题(本大题共 10个小题,每小题 3分,共 30分 .在每个小题给出的四个选项中, 作BG ⊥ CE于点G,若BG = 3,DF = 8,则FG的长为只有一项符合题目要求,请选出并在答题卡上将该项涂黑) A. 4 B. 5 C. 7 D. 111. 若将下面的四个有理数表示在数轴上,则位于最左边的是 8. 某餐厅规定等位时间达到 30分钟(包括 30 分钟)可享受优惠 .现统计了某时段顾客A. - 1 B. - 1 C. 1 D. 3 的等位时间(t 分钟),如图是根据数据绘制的统计图 .下列说法正确的是3 3 A. 此时段有1桌顾客等位时间是40分钟2. 中国“二十四节气”已被列入联合国教科文组织人类非物质文化遗产代表作名录, B. 此时段平均等位时间不小于20分钟下列四幅作品分别代表“立春”“立夏”“芒种”“大雪”,其中既是轴对称图形,又是中 C. 此时段等位时间的中位数可能是26心对称图形的是 D. 此时段有5桌顾客可享受优惠/ R频数 桌12 12 溶解度/g10 9 数据分成6组: a8 10 ≤ t < 156 15 ≤ t < 20 bA B C D 6 5 20 ≤ t < 253. 4 2 25 ≤ t < 30下列运算正确的是 2 1 30 ≤ t < 35 c35 ≤ t < 40A. 2 + 3 = 2 3 B. 2 3 - 3 = 3 C. 1 = 14 2 D. (-2)2 = - 2 0 10 15 20 25 30 35 40 / O t1 t2 t3 温度/℃t 分钟第9题图4. 第8题图如图是由 8个相同的小立方体组成的几何体的俯视图,小正方形中的数字表示该位 9. 在化学实验中,小明研究 a,b,c三种固体物质的溶解度,如图为这三种固体物质的置上小立方体的个数,则这个几何体的主视图是 溶解度与温度对应的图象 .下列说法正确的是3 A. a,b,c三种物质的溶解度都随温度的增加而变大1 2 1 B. a,b,c三种物质中,c物质的溶解度最小1 C. 温度为 t2 ℃时,a,b,c三种物质的溶解度由大到小的顺序是a > b > cA B C D 第4题图 D. 温度为 t1 ℃时,b,c两种物质的溶解度相等数学试卷 第1页(共8页) 数学试卷 第2页(共8页)10. 如图,△ABC 为等边三角形,BD 平分∠ABC,AB = 2,点 E A 三、解答题(本大题共8个小题,共75分 .解答应写出文字说明、证明过程或演算步骤)为 BD 上一动点,连接 AE,当 AE + 12 BE 取最小值时,DE 16.( 本题共2个小题,每小题5分,共10分)D -1的长为 (1)计算:2sin 45° - ∣ - 18 ∣ +( π - 4)0 + (- 13 ) ;EB CA. 1 B. 2 第10题图C. 33 D. 22第Ⅱ卷 非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11. x2 - 9化简:2 + 6 = ▲ .x (2 ìx + 3 > 0,)解不等式组:í12. 2( x - 1) + 3 ≥ 3并判断 - 1, 2 这两个数是否为该不等式组x,“植树造林滋沃土,防风固沙护良田”.要反映一个区域近15 的解 .R年森林覆盖率的变化情况,从“扇形统计图”“条形统计图”“折线统计图”中选择一种统计图,最适合的统计图第12题图是 ▲ .13.《 九章算术》中有这样一个题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十 .今将钱三十,得酒二斗 .问醇、行酒各得几何?”其译文是:今有醇酒(优质酒)1斗,价值 50钱;行酒(劣质酒)1斗,价值 10钱 .现有 30钱,买得 2斗酒 .问醇酒、行酒各能 R买得多少?设醇酒为 x斗,行酒为 y斗,则可列二元一次方程组为 ▲ .14. = 4 = k 17.( 本题6分)如图,△ABC中,AB = BC,D在BC的延长线上,连接AD,E为AD的中点 .如图,在平面直角坐标系中,点 B在函数 y x 的图象上,点 A在函数 y x 的图象 (1)尺规作图:在△ABC 内部求作一点P,使点P到点A,B,C的距离都相等(保留作上,若OA = 2OB,∠AOB = 90°,则 k的值为 ▲ . 图痕迹,不写作法);B (2)在(1)的基础上,若直线BP与线段AC交于点F,连接EF,求证:EF∥BC. yAEA EB F DBO CDx A C第14题图 第15题图15. 如图,在 Rt△ABC 中,∠ACB = 90°,AB = 10,BC = 8,AD 平分∠BAC,交 BC 于点 D,点E为边AB上一点,连接CE,交AD于点F,当AE = 2BE时,DF的长为 ▲ .数学试卷 第3页(共8页) 数学试卷 第4页(共8页)18.( 本题 9 分)为贯彻落实山西省教育厅《关于加强中小学生体质健康管理的实施意 20.( 本题8分)阅读与思考见》,某中学在九年级开展了“阳光体育”大课间活动,并组织全年级全体学生进行 请认真阅读材料,并完成相应任务 .了“1分钟跳绳”体能测试 .测试成绩根据《国家学生体质健康标准》划分为四个等级:把 1分钟跳绳完成个数用 x表示,A:x ≥ 150,B:120 ≤ x ≤ 149 C 90 ≤ ≤ 119 婆罗摩笈多是公元 7 世纪的古印度伟大数学家,曾研究过对角线,: x , 互相垂直的圆内接四边形,这类四边形被称为“婆罗摩笈多四边形”.D:x ≤ 89. 我们一起了解这位数学家的研究成果吧!该校将此次“1分钟跳绳”体能测试的成绩整理成如下两幅尚不完整的统计图 . A如图 1,已知⊙O 的内接四边形 ABCD,对角各等级人数条形统计图 线 AC ⊥ BD 于点 P. 婆罗摩笈多发现 AP 2 + BP 2 + B P D人数 2 2240 各等级人数扇形统计图 CP + DP 等于⊙O半径平方的4倍 . O200 下面是他的探究思路:160120 B ∵AC ⊥ BD于点P,C80 80 60 CA ∴∠APB = 90°图1,∠CPD = 90°.40 20 D 2 2 2 20 20% ∴AP + BP = AB , CP + DP 2 = CD 2(. 依据1)A B C D 等级 如图2,连接CO并延长交⊙O于点Q,连接DQ, A Q请根据上述信息,解决下列问题: 则∠CDQ = 90R°(. 依据2)(1 P)该校九年级共有 ▲ 名学生,B等级对应的人数为 ▲ ; ∴∠1 + ∠Q = 90°. B 2 D(2)扇形统计图中,D等级所对应扇形的圆心角度数为 ▲ ; 又∵?CD = ?CD O, 3 1(3)已知此次测试中成绩前五名的同学(记为 A,B,C,D,E),其中A和D是女生,另 ∴∠Q = ∠2.外 3 C人是男生 .老师从 5人中随机邀请 2人给其他同学做示范,请用列表或画树 ∵AC ⊥ BD, 图2状图的方法,求邀请的2位同学恰好都是男生的概率 . ∴∠BPC = 90°.∴∠3 + ∠2 = 90°.∴∠1 = ∠3.…… R任务:19.( 本题 10分)某电器商场从厂家购进了A,B两种型号的电烤箱,已知一台A型电烤 (1)填空:材料中的依据1是指: ▲ ,依据2是指: ▲ ;箱的进价比一台B型电烤箱的进价多400元,用7600元购进A型电烤箱和用6000元 (2)请完成材料中的剩余证明;购进B型电烤箱的台数相同 . (3)如图 3,⊙M 的半径为 5,四边形 EFGH 内接于⊙M,且 EG ⊥ FH 于点 P,EF = 4,(1)求一台A型电烤箱和一台B型电烤箱的进价各为多少元?2 则HG的长为 ▲ .()在销售过程中,A型电烤箱因为造型精致,噪音小而更受消费者的欢迎 .该商场 E决定停止购进B型电烤箱,并对库存货品进行降价销售,力求尽快清空库存货 H品 .经市场调查,当B型电烤箱的售价为 2400元时,每天可售出 4台,在此基础 M P F上,售价每降低50元,每天将多售出1台,如果每天该商场销售B型电烤箱的利润为5600元,请问该商场应将B型电烤箱的售价定为多少元? G图3数学试卷 第5页(共8页) 数学试卷 第6页(共8页)21.( 本题 8分)随着手机普及率不断提高,其对社会和个人产生多维度影响 .在经济领 问题解决:域,不仅推动消费升级,还重塑传统商业模式,“手机直播”也随之成为新兴潮流 . (3)在(2)的情况下,计划调整出水口 A的高度,使落水点恰好在石栏底部,已知出常见的悬臂式手机直播支架便是这一潮流下的产物,如图 1 所示,它外观简洁实 水口高度调整后,喷头喷出的水流形状和对称轴不变,则OA的高度如何变化 .用 .从图 2 和图 3 的几何示意图可见,支架底座 AB平稳置于水平地面,立杆CD ⊥ yAB,高度为 100 cm;支杆DE可绕点D旋转,长度为 30 cm,与可调节的悬臂EF相互 A配合,为手机直播提供稳定支撑 . A(1)如图 2,C,D,E三点共线,先将支杆 DE绕点 D 逆时针旋转 60°,再将悬臂 EF绕 O O xE 点旋转,同时调节悬臂 EF 的长度(如图 3),此时∠DEF = 75°,求点 E 到地面 图1 图2的距离;(2)在(1)的条件下,点F到地面的距离为150 cm,求调节后悬臂EF的长 .(结果精确到1 cm,参考数据: 2 ≈ 1.41, 3 ≈ 1.73)F 23.( 本题13分)综合与探究EF E 问题情境:学习完轴对称的性质后,同学们开展了折叠矩形纸片的实践探究活动 .D D 如图 1,点E,F分别是R矩形ABCD的边BC,AD上的点,将△ABE,△CDF分别沿AE,CF折叠,使点B,点D的对应点分别落在矩形对角线AC上的点B',D'处 .A C B A猜想证明:C B1 2 3 (1)判断四边形AECF的形状,并说明理由;图 图 图深入探究:(2)如图 2,在矩形ABCD中,E为线段BC上一动点,设AE = mAB,将△ABE沿AE折叠,得到△AB'E,延长AB'交CD于点F,若AF = mAE,猜想线段BE与CE的数量关系,并说明理由;拓展应用: R(3)如图 3,一张直角三角形纸片记作 Rt△ABC,∠B = 90°,AB = 4 cm,BC = 6 cm,点E为BC的中点,沿AE折叠该纸片,点B的对应点为点B',B'E与AC相交于点G,22. 11 则△AB′E与原三角形纸片重叠部分的面积为 ▲ cm2.(本题 分)综合与实践 F A问题情境:某购物广场计划在门前的广场中央新建造一个圆形喷水池,并在水池中 A D A B' DD' B'央垂直于地面处安装一根石柱,在石柱顶端A处安装一个喷头向外喷水,水流在各 F G个方向上沿形状相同的抛物线路径落下,且在过OA的任一平面上抛物线路径如图 B'1 B C B C B C所示,已知石柱在水面以上部分OA的高度为 4米,为使水流形状较为漂亮,要求 E E E图1 图2 图3设计水流在距离石柱2米处达到最高,此时离水面6米 .模型建构:(1)以点O为原点建立如图 2所示的平面直角坐标系,求水流抛物线在第一象限内对应的函数表达式(不要求写自变量的取值范围);模型分析:(2)为了防止小朋友误入喷水池范围,计划在距喷头出水口的水平距离 5米处修建高度为1米的一圈石栏,请通过计算判断此时喷出的水流会不会落到石栏外;数学试卷 第7页(共8页) 数学试卷 第8页(共8页)2025年山西初中学业水平测试靶向联考试卷(二)数学参考答案及评分标准一、选择题题号 1 2 3 4 5 6 7 8 9 10答案 B D C A C B B B D C二、填空题11. x-3 x y=2,12. 13. 14. -8 15. 9 5折线统计图2 50x 10y=30 19三、解答题16. 2解:(1)原式=2× -3 2 +1+(-3)·············································································· 4分2= 2 -3 2 +1-3=-2 2 -2.········································································································5分 x 3>0,①(2) (2 x-1)+3≥3x.②解不等式①,得 x>﹣3.······································································································· 6分解不等式②,得 x≤1.··········································································································· 7分∴原不等式组的解集为﹣3<x≤1.······················································································ 8分∴﹣1是该不等式组的解,·································································································· 9分2 不是该不等式组的解.··································································································· 10分17. (1)解:如答图所示,点 P即为所求作.······························································································3分第 17题答图(2)证明:由(1)中所作的图形可知:PA=PC,数学答案 第 1 页 共 6 页∵AB=BC,∴BP为线段 AC的垂直平分线.··························································································· 4分∴AF=CF.∵E为 AD的中点,∴AE=DE.∴EF是△ADC的中位线.····································································································· 5分∴EF∥CD,即 EF∥BC.···································································································· 6分18. 解:(1)400 240············································································································· 2分(2)18°··································································································································4分(3)列表如下:A B C D EA (A,B) (A,C) (A,D) (A,E)B (B,A) (B,C) (B,D) (B,E)C (C,A) (C,B) (C,D) (C,E)D (D,A) (D,B) (D,C) (D,E)E (E,A) (E,B) (E,C) (E,D)·················································································································································· 6分由列表可知,总共有 20种结果,每种结果出现的可能性都相同.其中邀请的 2 位同学恰好都是男生的结果有 6种.········································································································· 8分6 3所以 P(邀请的 2位同学恰好都是男生)= = .·························································· 9分20 1019. 解:(1)设一台 B型电烤箱的进价为 x元,则一台 A型电烤箱的进价为(x+400)元.················································································································································· 1分6000 = 7600根据题意,得 .·······························································································2分x x 400解,得 x=1500. ··················································································································· 3分经检验,x=1500是原方程的解.························································································· 4分∴x+400=1900.答:一台 A型电烤箱的进价为 1900元,一台 B型电烤箱的进价为 1500元.············5分(2)设该商场应将 B型电烤箱在 2400元的基础上降价 m元.m根据题意,得(2400-m-1500)(4+ )=5600. ·····························································7分50数学答案 第 2 页 共 6 页解,得 m1=200,m2=500.································································································8分因为力求尽快清空库存,所以应降价 500元.···································································· 9分2400-500=1900(元).答:该商场应将 B型电烤箱的售价定为 1900元.···························································10分20. 解:(1)勾股定理(或直角三角形两直角边的平方和等于斜边的平方)··················· 1分直径所对的圆周角是直角······························································································· 2分(2)如答图,连接 OA,OB,OD,··················································································3分第 20题答图∴∠DOQ=∠AOB.∴DQ=AB.······························································································································· 4分在 Rt△CDQ中,DQ2+CD2=CQ2,∴AB2+CD2=CQ2.∴AP2+BP2+CP2+DP2=CQ2.···································································································· 5分设⊙O的半径为 r,则 CQ=2r.∴AP2+BP2+CP2+DP2=(2r)2=4r2.·····························································································6分(3)2 21 ······························································································································ 8分21. 解:(1)如答图 1,过点 E作 EG⊥AB于点 G,过点 D作 DH⊥EG于点 H.············1分第 21题答图 1数学答案 第 3 页 共 6 页∵CD⊥AB,∴四边形 HGCD为矩形.∴HG=CD=100 ,∠CDH=90°.·································································································2分由旋转得∠CDE=180°-60°=120°,∴∠EDH=∠CDE -∠CDH=30°.∵在 Rt△EDH中,∠EHD=90°,DE=30,∠EDH=30°,∴sin∠EDH= EH .DE1∴EH=DE sin 30°=30× =15.·································································································3分2∴EG=EH+HG=115(cm).答:点 E到地面的距离为 115 cm.························································································4分(2)如答图 2,过点 F作 FM⊥EG,交 GE的延长线于点M.········································5分第 21题答图 2∴∠M=90°.∵∠DHE=90°,∠EDH=30°,∴∠DEH=60°.∵∠DEF=75°,∴∠MEF=180° -∠DEH -∠DEF=45°.·················································································6分∵GM=150,∴EM=GM - EG=35.··············································································································· 7分∵在 Rt△EMF中,∠M=90°,∠MEF=45°,cos MEF= EM∴ ∠ .EF∴EF= EM 35 =35 2 ≈49(cm).cos MEF cos45 答:调节后悬臂 EF的长约为 49 cm.··················································································· 8分22. 解:(1)由题意可知抛物线的顶点坐标为(2,6),····················································· 1分∴设水流抛物线在第一象限内的函数表达式为 y=a(x﹣2)2+6.·································· 2分∵OA=4,∴点 A的坐标为(0,4).····································································································3分∵点 A(0,4)在抛物线 y=a(x﹣2)2+6上,数学答案 第 4 页 共 6 页∴4=4a+6.1解,得 a=- .21∴水流抛物线在第一象限内的函数表达式为 y=- (x﹣2)2+6.································4分21(2)由(1)可知:y=- (x﹣2)2+6.2当 y=1 1时,- (x﹣2)2+6=1.2解,得 x1=2+ 10,x2=2- 10(舍去).············································································· 6分∵2+ 10>5,∴在离喷头出水口的水平距离 5米处,水流高度高于石栏高度,水流会落到石栏外.················································································································································· 7分1(3)设出水口高度调整后,在第一象限内水流所在抛物线的函数表达式为 y=- (x﹣2)22+h.··········································································································································8分∵抛物线经过点(5,0),1∴- ×9+h=0.29解,得 h= .··························································································································· 9分21 9∴y=- (x﹣2)2+ .2 2当 x=0 5时,y= .24- 5 = 3 (米).······················································································································· 10分2 23∴OA要降低 米.······················································································································ 11分223. 解:(1)四边形 AECF是平行四边形.··············································································1分理由如下:∵四边形 ABCD是矩形,∴AD∥BC,AB∥DC.∴∠BAC=∠DCA.·················································································································· 2分由折叠可知∠BAE=∠CAE= 1 ∠BAC 1,∠DCF=∠ACF= ∠DCA,·····························3分2 2∴∠CAE=∠ACF.∴AE∥FC.∴四边形 AECF是平行四边形.·····························································································4分(2)BE=CE.···························································································································5分理由如下:数学答案 第 5 页 共 6 页如答图,连接 EF,第 23题答图∵四边形 ABCD是矩形,∴∠B=∠C=90°.······················································································································6分由折叠可知∠BAE=∠B′AE,∠AEB=∠AEB′,∠B=∠AB′E=90°,BE=B′E.···················7分∴∠EB′F=90°.∵AE=mAB,AF=mAE,AE AF∴ =m.AB AE∴△AEF∽△ABE.∴∠AEF=∠B=90°.·················································································································8分∴∠AEB′+∠FEB′=90°,∠AEB+∠FEC=90°.∴∠FEB′=∠FEC.∵EF=EF,∠EB′F=∠C=90°,∴△B′EF≌△CEF.··················································································································10分∴B′E=CE.∴BE=CE.·································································································································11分(3 150) ·····································································································································13分43【说明】以上各题的其他解法,请参照此标准评分.数学答案 第 6 页 共 6 页 展开更多...... 收起↑ 资源列表 山西省吕梁市部分学校2025年中考二模数学试卷(PDF版,含答案).pdf 数学答案.pdf