资源简介 小升初典型奥数 流水行船问题1.甲轮船和自漂水流测试仪同时从上游的 A 站顺水向下游的 B 站驶去,与此同时乙轮船自 B 站出发逆水向 A 站驶来.7.2 时后乙轮船与自漂水流测试仪相遇.已知甲轮船与自漂水流测试仪 2.5 时后相距 31.25 千米,甲、乙两船航速相等,求 A,B 两站的距离.2.船往返于上下游的两港之间,顺水而下需要用10小时,逆水而上需要用15小时.由于暴雨后水速增加,该船顺水而行只需9小时,那么逆水而行需要几小时?3.甲乙两港相距192千米,一艘轮船从甲港顺水而下行16小时到达乙港,已知船在静水中的速度是水流速度的5倍,分别求水速和船速是多少?4.一艘小船往返于一段长120千米的航道之间,上行时行了15小时,下行时行了12小时,求船在静水中航行的速度与水速各是多少?5.一艘轮船在两个港口间航行,水速为每小时6千米,顺水下行需要4小时,返回上行需要7小时.求:这两个港口之间的距离 6.某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?7.某船在静水中的速度是每小时16千米,它逆水航行了12小时,行了144千米,如果这时原路返回,要行多少小时?8.甲、 乙两港相距200千米.一艘轮船从甲港顺流而下10小时到达乙港,已知船速是水速的9倍.这艘轮船从乙港返回甲港用多少个小时?9.一只小船运木料 ,逆流而上,在途中掉下一块木头在水中,2分钟后,小船掉头追木头,(不算掉头时间)再经过多少分钟,船可以追上木头?10.甲乙两个码头相距336千米,一艘轮船从乙码头逆水而上,行了14小时到达甲码头。已知船速是水速的13倍,这艘轮船从甲码头返回需要几小时?11.A、B两地位于同一条河上,B地在A地下游100千米处.甲船从A地、乙船从B地同时出发,相向而行,甲船到达B地、乙船到达A地后,都立即按原来路线返航.水速为2米/秒,且两船在静水中的速度相同.如果两船两次相遇的地点相距20千米,那么两船在静水中的速度是每秒多少米?12.某人畅游长江,逆流而上,在处丢失一只水壶,他向前又游了分钟后,才发现丢失了水壶,立即返回追寻,在离处千米的地方追到,则他返回寻水壶用了多少分钟?13.一只轮船从甲港顺水而下到乙港,马上又从乙港逆水行回甲港,共用了小时.已知顺水每小时比逆水多行千米,又知前4小时比后4小时多行千米.那么,甲、乙两港相距多少千米?14.小刚和小强租一条小船,向上游划去,不慎把水壶掉进江中,当他们发现并调过船头时,水壶与船已经相距2千米,假定小船的速度是每小时4千米,水流速度是每小时2千米,那么他们追上水壶需要多少时间?15.沿河上、下有两个乡镇,相距85千米,有一只船往返于两乡镇之间,船的速度是每小时18.5千米,水流的速度是每小时1.5千米,求这只船往返一次所需要的时间?16.甲、乙两个码头间的河流长为120千米,、两艘客轮同时起航,如果相向而行3小时相遇;如果同向而行15小时船追上船。求两船在静水中的速度。17.两船在静水中速度相同,它们同时自河的两个码头相对开出,3小时后相遇.已知水流速度是4千米/小时.求:相遇时甲、乙两船航行的距离相差多少千米?18.小明计划上午 7时 50分到 8时10分之间从码头出发划船顺流而下.已知河水流速为1.4 千米/小时,船在静水中的划行速度为 3千米/小时.规定除第一次划行可不超过 30分钟外,其余每次划行均为 30分钟,任意两次划行之间都要休息15分钟,中途不能改变方向,只能在某次休息后往回划.如果要求小明必须在11时15分准时返回码头,为了使他划行到下游尽可能远处,他应该在什么时间开始划,划到的最远处距码头多少千米?19.两码头相距432千米,轮船顺水行这段路程需要16小时,逆水每小时比顺水少行9千米,问行驶这段路程顺水比逆水少用几小时?水流速度是多少?20.一条河上有甲、乙两个码头,甲在乙的上游 50 千米处.客船和货船分别从甲、乙两码头出发向上游行驶,两船的静水速度相同且始终保持不变.客船出发时有一物品从船上落入水中,10 分钟后此物距客船 5 千米.客船在行驶 20 千米后折向下游追赶此物,追上时恰好和货船相遇.求水流的速度.21.两港相距560千米,甲船往返两港需105小时,逆流航行比顺流航行多用了35小时.乙船的静水速度是甲船的静水速度的2倍,那么乙船往返两港需要多少小时?22.甲、乙两船在静水中速度相同,它们同时自河的两个码头相对开出,3小时后相遇.已知水流速度是4千米/时.求:相遇时甲、乙两船航行的距离相差多少千米?23.一艘货轮从甲港到乙港顺流而行要8小时,返回时每小时比顺水少行10千米,已知甲乙两港相距208千米,返回时比去时多行几小时?水流的速度是每小时多少千米?24.两个顽皮的孩子逆着自动扶梯的方向行走.在20秒里,男孩可走27级台阶,女孩可走24级台阶,男孩走了2分钟到达另一端,女孩走了3分钟到达另一端,该扶梯共有多少级台阶?25.一艘轮船从上海港开往武汉港,顺流而下每小时行25千米,返回时逆流而上用了75小时,已知这段航道的水流速度是每小时5千米,两港相距多少千米?26.一艘船在一条河中顺水航行每小时行40千米,逆水航行每小时行30千米。问:这艘船在静水中的速度是每小时行多少千米?27.今有A、B两个港口,A在B的上游60千米处.甲、乙两船分别从A、B两港同时出发,都向上游航行.甲船出发时,有一物品掉落水中,浮在水面,随水流漂往下游.甲船出发航行一段后,调头去追落水的物品.当甲船追上落水物品时,恰好和乙船相遇.已知甲、乙两船在静水中的航行速度相同,且这个速度为水速的6倍.当甲船调头时,甲船已航行多少千米?28.AB两个码头相距128千米,一只船从A码头逆水而上,行了8小时到达B码头,已知船速是水速的9倍,这只船从B码头返回A码头需要几小时?29.一艘轮船顺流航行 120 千米,逆流航行 80 千米共用 16 时;顺流航行 60 千米,逆流航行 120 千米也用 16 时.求水流的速度.30.一条小渔船半夜顺流而下140千米,花了10小时;之后原路返航,花了14小时。若第二天下雨,水流速度变为前一天的2倍,则逆流而上120千米需要多少小时?31.甲、乙两船,甲船静水速度是水速的11倍,乙船静水速度是水速的7倍。在赣江上,甲船顺流而下从A到B需要3小时,那么乙船逆流而上从B到A需要几小时?32.甲乙之间的水路是234千米,一只船从甲港到乙港需9小时,从乙港返回甲港需13小时,问船速和水速各为每小时多少千米?33.一条小河上, A、B 两地相距50千米。甲、乙两船分别从A、B两地同时出发,逆流而上。若甲、乙两船静水速度分别为每小时30和40千米,那出发后几小时乙追上甲?34.甲、乙两艘游艇,静水中甲艇每小时行千米,乙艇每小时行千米.现在甲、乙两游艇于同一时刻相向出发,甲艇从下游上行,乙艇从相距27千米的上游下行,两艇于途中相遇后,又经过4小时,甲艇到达乙艇的出发地.水流速度是每小时多少千米?35.一条小河上,A、B两地相距 180千米,甲、乙两船分别从A、B两地同时出发,相向而行。若甲、乙两船的静水速度分别为每小时40和50千米,则出发后几小时相遇?36.甲、乙两地相距30千米,且从甲地到乙地为上坡,乙地到甲地为下坡,小明用2个小时从甲地出发到乙地再返回甲地,且第二个小时比第一个小时多行了12千米,小明上坡和下坡的速度分别为多少?37.甲、乙两船,甲船静水速度是水速的11倍,乙船静水速度是水速的7倍。两船分别从 A 、B 两地同时出发,在A、B之间往返航行,出发后6小时第一次相遇。如果A在B上游,那么第一次相遇后,再过几小时两船第二次相遇?38.某人畅游长江,逆流而上,在A处丢失一只水壶,他向前又游了20分钟后,才发现丢失了水壶,立即返回追寻,在离A处2千米的地方追到,则他返回寻水壶用了多少分钟?39.一条船往返于甲、乙两港之间,由甲至乙是顺水行驶;由乙至甲是逆水行驶,已知船在静水中的速度为每小时8公里,平时逆行与顺行所用时间的比为2:1,某天恰逢暴雨,水流速度变为原来的2倍,这条船往返共用9小时,那么甲乙两港相距多少公里?40.、两码头间河流长为千米,甲、乙两船分别从、码头同时起航.如果相向而行小时相遇,如果同向而行小时甲船追上乙船.求两船在静水中的速度.41.甲船在静水中的船速是10千米/时,乙船在静水中的船速是千米/时.两船同时从港出发逆流而上,水流速度是千米/时,乙船到港后立即返回.从出发到两船相遇用了小时,问:,两港相距多少千米?42.一只小船在静水中速度为每小时千米.它在长千米的河中逆水而行用了小时.求返回原处需用几个小时?43.船往返于相距180千米的两港之间,顺水而下需用10小时,逆水而上需用15小时.由于暴雨后水速增加,该船顺水而行只需9小时,那么逆水而行需要几小时 44.某人乘船由地顺流而下到达地,然后又逆流而上到达同一条河边的地,共用了3小时.已知船在静水中的速度为每小时8千米,水流的速度为每小时2千米.如果、两地间的距离为2千米,那么、两地间的距离是多少千米?45.甲、乙两船在静水中的速度分别为每小时24千米和每小时36千米,两船从某河相距360千米的两港同时出发相向而行,几小时相遇?46.甲、乙两船分别从港顺水而下至千米外的港,静水中甲船每小时行千米,乙船每小时行千米,水速为每小时千米,乙船出发后小时,甲船才出发,到港后返回与乙迎面相遇,此处距港多少千米?47.甲乙两港相距112千米,一只船从甲港顺水而下7小时到达乙港,已知船速是水速的15倍,这只船从乙港返回甲港用多少小时?48.王小明同学骑自行车去商场买东西,家距离商场6000米.去的时候顺风用了20分钟,他估计若照这样的骑车速度,返回将需要30分钟,求他在静风中行驶的速度与风速.49.一条小河流过A,B, C三镇.A,B两镇之间有汽船来往,汽船在静水中的速度为每小时11千米.B,C两镇之间有木船摆渡,木船在静水中的速度为每小时3.5千米.已知A,C两镇水路相距50千米,水流速度为每小时1.5千米.某人从A镇上船顺流而下到B镇,吃午饭用去1小时,接着乘木船又顺流而下到C镇,共用8小时.那么A,B两镇间的距离是多少千米 50.母亲河上, 码头A在B上游540千米处,甲、乙两船分别从A、B同时出发, 在两码头之间往返运送货物。若甲、乙两船的静水速度分别为每小时50和40千米,水速为每小时10千米,则出发后甲、乙第二次迎面相遇地点离A多少千米?51.AB两地相距240千米,甲摩托车顺风行驶速度为每小时20千米,逆风行驶速度是每小时12千米,乙摩托车在静风中行驶20千米,乙船往返AB两地需要多少小时?52.光明号渔船顺水而下行200千米要10小时,逆水而上行120千米也要10小时.那么,在静水中航行320千米需要多少小时?53.甲乙两港间的水路长432千米,一只船从上游甲港航行到下游乙港需要18小时,从乙港返回甲港,需要24小时到达,求船速是多少?54.甲、乙两港的水路长300千米,一艘轮船顺水航行这段路程用了15小时,逆水航行这段路程用了20小时。求此时的水速。55.轮船用同一速度往返于两码头之间,在相同时间内如果它顺流而下能行千米,如果逆流而上能行千米,如果水流速度是每小时千米,求顺水、逆水速度.56.甲、乙两只小船在静水中速度分别为每小时12千米和每小时16千米,两船同时从相距168千米的上、下游两港同时出发相向而行,几小时相遇?如果同向而行,甲船在前,乙船在后,几小时乙船追上甲船?57.甲、乙两艘小游艇,静水中甲艇每小时行千米,乙艇每小时行千米.现甲、乙两艘小游艇于同一时刻相向出发,甲艇从下游上行,乙艇从相距18千米的上游下行,两艇于途中相遇后,又经过4小时,甲艇到达乙艇的出发地.问水流速度为每小时多少千米?21世纪教育网(www.21cnjy.com)21世纪教育网(www.21cnjy.com)参考答案:1.90千米【详解】因为测试仪的漂流速度与水流速度相同,所以若水不流动,则 7.2 时后乙船到达 A 站,2.5 时后甲船距 A站 31.25 千米.由此求出甲、乙船的航速为 31.25÷2.5=12.5(千米/时). A,B 两站相距12.5×7.2=90(千米).2.18小时【详解】如果知道上下游两港之间的距离,那么本题中船在顺水、逆水、静水中的速度以及水流的速度都可以求出.所以我们可以首先假设上下两港之间的距离为“1”个单位.解: 假设上下两港之间的距离为“1”个单位.船在静水中的速度是:(单位/小时).暴雨后水流的速度是:(单位/小时).暴雨后船逆水而上需用的时间为:(小时).【点睛】此题中有一个不变量需要找出,即暴雨前后的船静水速度不变.不变量的寻找是解决所有应用题的关键,因为不变量相当于桥梁作用,将各种变量联系起来.3.水速是2千米/小时,船速是10千米/小时【分析】由航行距离和航行时间即可求得顺水的速度,即192÷16=12千米/小时,再由船在静水中的速度是水流速度的5倍,可求出水速,从而可求得船速。【详解】顺水速度:192÷16=12(千米/小时)水速:12÷(5+1)=2(千米/小时)船速:2×5=10(千米/小时)答:水速是2千米/小时,船速是10千米/小时。【点睛】解决此题的关键是明白顺水速=静水速+水速,从而可分别求得水速和船速。4.静水中航行的速度是每小时9千米,水速是每小时1千米【分析】求船在静水中航行的速度是求船速,用路程除以上行的时间就是逆行速度,路程除以下行时间就是顺水速度.顺水速度与逆水速度的和除以2就是船速,顺水速度与逆水速度的差除以2就是水速.【详解】逆水速度:120÷15=8(千米/小时)顺水速度:120÷12=10(千米/小时)船速:(10+8)÷2=9(千米/小时)水速:(10--8)÷2=1(千米/小时)答:船在静水中航行的速度是每小时9千米,水速是每小时1千米.5.112千米【详解】(船速+6)×4=(船速-6)×7,可得船速=22,两港之间的距离为:(22+6)×4=112千米.6.12小时【详解】从甲地到乙地的顺水速度为(千米/时),甲、乙两地路程为(千米),从乙地到甲地的逆水速度为(千米/时),返回所需要的时间为(小时).7.7.2小时【分析】根据“逆水航行了12小时,行了144千米”可以计算出逆水速度;静水速度-逆水速度=水流速度;进而可求出顺水速度,再根据路程÷速度=时间计算出返回需要的时间。【详解】逆水速度:144÷12=12(千米/时)水流速度:16-12=4(千米/时)顺水速度:16+4=20(千米/时)返回需要的时间:144÷20=7.2(小时)答:原路返回需要7.2小时。【点睛】主要考查了学生对于流水行船问题的掌理解和掌握。牢记并能灵活运用公式是解答此类问题的关键。流水行船问题的基本公式有:逆水速度=静水速度-水速;顺水速度=静水速度+水速;水速=(顺水速度-逆水速度)÷2。8.12.5小时【分析】根据甲、乙两港的距离和从甲港到乙港的时间可以求出顺水速度是每小时200÷10=20(千米/小时),顺水速度是船速与水速的和,已知船速是水速的9倍,可以求出水速是20÷(1+9)=2(千米/小时),船速为2×9=18(千米/小时),逆水速度为18-2=16(千米/小时)【详解】顺水速度:200 ÷10=20(千米/小时)水速:20÷(1+9)=2(千米/小时)船速:2×9=18(千米/小时)逆水速度:18-2=16(千米/小时)返回时间:200÷16=12.5(小时)答:这艘轮船从乙港返回甲港用12.5个小时.9.2 分钟【分析】有题意可知:木头的速度就是水流的速度,在A处掉下一块木头后,木头会顺着水流的速度向下漂,船继续逆流而上,船和木头的速度和就是船在静水中的速度,所以2分钟后,船和木头之间是距离是:2×船速,此后船返回去追木头,变成了追及问题,船的速度是船在静水中的速度+水流速度,木头的速度还是水流速度,所以船和木头的速度差还是船在静水中的速度,即可求出船追上木头的时间。【详解】2分钟后船和木头之间的距离是:2×(船速—水速)+2×水速=2×船速小船追木头的时间:2×船速÷(船速+水速—水速)=2(分钟)答:再经过2分钟,船可以追上木头。【点睛】本题关键理清两点:木头的速度就是水流的速度,船和木头的速度差还是船在静水中的速度。10.12小时【分析】首先根据距离和时间求出逆水速度。逆水速度=船速-水速;又已知船速是水速的13倍,根据差倍公式可求处水速;进而可以求出顺水速度;再根据时间=路程÷速度求出返回时间。【详解】逆水速度是:336÷14=24(千米/时)根据差倍公式,可求:水速:24÷(13-1)=24÷12=2(千米/时)顺水速度:24+2+2=28(千米/时)返回时间是:336÷28=12(小时)答:这艘轮船从甲码头返回需要12小时。【点睛】熟练掌握逆水速度=船速-水速;顺水速度=船速+水速以及差倍公式是解答本题的关键。11.10米【详解】本题采用折线图来分析较为简便.如图,箭头表示水流方向,表示甲船的路线,表示乙船的路线,两个交点、就是两次相遇的地点.由于两船在静水中的速度相同,所以两船的顺水速度和逆水速度都分别相同,那么两船顺水行船和逆水行船所用的时间都分别相同,表现在图中,就是和的长度相同,和的长度相同.那么根据对称性可以知道,点距的距离与点距的距离相等,也就是说两次相遇地点与、两地的距离是相等的.而这两次相遇的地点相距20千米,所以第一次相遇时,两船分别走了千米和千米,可得两船的顺水速度和逆水速度之比为.而顺水速度与逆水速度的差为水速的2倍,即为4米/秒,可得顺水速度为米/秒,那么两船在静水中的速度为米/秒.12.20分钟【详解】此人丢失水壶后继续逆流而上分钟,水壶则顺流而下,两者速度和此人的逆水速度水速此人的静水速度水速水速此人的静水速度,此人与水壶的距离两者速度和时间.此人发现水壶丢失后返回,与水壶一同顺流而下.两者速度差等于此人的静水速度,故等于丢失水壶后至返回追寻前的两者速度和,而追及距离即此人发现水壶丢失时与水壶的距离,所以追及时间等于丢失水壶后至发现丢失并返回追寻的这一段时间,即分钟.13.150千米【详解】由于前小时比后四小时多行千米,而顺水每小时比逆水多行千米,所以前4小时中顺水的时间为(小时),说明轮船顺水3小时行完全程,逆水则需小时,所以顺水速度与逆水速度之比为,又顺水每小时比逆水多行千米,所以顺水速度为(千米/时),甲、乙两港的距离为(千米).14.0.5小时【分析】根据题意知道,船在行驶,水壶也在随水漂浮,所以船相对水壶的速度是(4+2-2);再根据速度,路程,时间的关系,即可求出时间。【详解】已知路程差是2千米,船在顺水中的速度是船速水速,水壶飘流的速度等于水速,所以速度差船顺水速度-水壶飘流的速度(船速+水速)-水速船速。追及时间路程差÷船速,追上水壶需要的时间为2÷4=0.5(小时)。答:追上水壶需要0.5小时。【点睛】本题考查流水行船方面的问题,解题的关键是找出数量关系。15.9.25小时【分析】往返的路程是一样,但是速度不一样,一个是顺流,一个是逆流。顺流速度=船在静水中的速度+水流速度,逆流速度=船在静水中的速度—水流速度。据此解答。【详解】85÷(18.5+1.5)+85÷(18.5—1.5)=85÷20+85÷17=4.25+5=9.25(小时)答:求这只船往返一次所需要的时间是9.25小时。【点睛】熟练运用公式:顺流速度=船在静水中的速度+水流速度,逆流速度=船在静水中的速度—水流速度就可解决此类问题。16.A船24千米小时;B船16千米小时【分析】如果两船相向而行,3小时相遇,一个是顺水的速度,一个是逆水的速度,则它们的速度和为:A船速度+水速+B船速-水速=两个码头之间的距离÷相遇的时间。如果两船同向而行,都是相同的顺水的速度,15小时船追上船。则它们的速度差为:A船速度+水速-(B船速+水速)=两个码头之间的距离÷追及的时间。分别得出两个船的船速和以及船速,利用公式(和+差)÷2=较大的速度,(和-差)÷2=较小的速度。【详解】120÷3=40(千米/小时)120÷15=8(千米/小时)(40+8)÷2=48÷2=24(千米/小时)(40-8)÷2=32÷2=16(千米/小时)答:A船在静水中的速度是24千米/小时,B船在静水中的速度是16千米/小时。17.24千米【详解】甲船的顺水速度=船速+水速,乙船的逆水速度=船速一水速,故:速度差=(船速+水速)一(船速一水速)=2×水速,即:每小时甲船比乙船多走2×4=8(千米).3小时的距离差为3×8=24(千米).18.7时分,2.15千米【详解】由11 :15 向回推可得到,船在 8 :15 8 : 30:、 9 : 00 9 :15:、 9 : 45 10 : 00:、10 : 30 10 : 45:为小明的休息时间,每一段(15分钟)休息时间,帆船向下游漂流1.4×15/60=0.35千米,顺流划船每段时间(半小时)行驶(3 +1.4) ×0.5= 2.2千米,逆流航行每段时间(半小时)休息 (3-1.4) ×0.5= 0.8千米,因此如果 8 : 30 分以后小明还在顺行的话,那么最后三段划行时间内只能逆流而上2.4千米,不能抵消之前顺流划行和漂流的距离,所以最后四段划船时间都应该为逆流向上划船.后四次共向上划了0.8 ×4 =3.2千米.后三次休息时间向下游漂流 0.35× 3= 1.05千米.所以从8 : 30 到11 :15,最远时向上移动了3.2-1.05= 2.15千米.而第一段时间中,小明划船向下游移动了2.15-0.35 =1.8千米,共花时间1.8÷(3+1.4)=9/22小时所以,小明应该在7时分开始划,可划到的最远处距离码头2.15千米.19.8小时;4.5千米/时【分析】用路程除以顺水用的时间可求出顺水速度,再减去9就是逆水速度;用距离432除以逆水速度即可求得逆水行驶用的时间,然后用逆水用的时间减去顺水用的时间即可求出顺水比逆水少用的时间;水流速度=(顺水速度-逆水速度)÷2,代入数据求解即可。【详解】顺水速度:432÷16=27(千米/时)逆水速度:27-9=18(千米/时)逆水航行用时:432÷18=24(小时)24-16=8(小时)水流速度:(27-18)÷2=9÷2=4.5(千米/时)答:行驶这段路程顺水比逆水少用8小时,水流速度是4.5千米/时。【点睛】本题的关键是先求出逆水速度,再根据时间=路程÷速度以及水流速度=(顺水速度-逆水速度)÷2列式解答。20.6千米/小时【详解】5÷1/6=30(千米/小时),所以两处的静水速度均为每小时 30 千米. 50÷30=5/3(小时),所以货船与物品相遇需要5/3小时,即两船经过5/3小时候相遇. 由于两船静水速度相同,所以客船行驶 20 千米后两船仍相距 50 千米. 50÷(30+30)=5/6(小时),所以客船调头后经过5/6小时两船相遇. 30-20÷(5/3-5/6)=6(千米/小时),所以水流的速度是每小时 6 千米.21.48小时【详解】先求出甲船往返航行的时间分别是:(小时),(小时).再求出甲船逆水速度每小时(千米),顺水速度每小时(千米),因此甲船在静水中的速度是每小时(千米),水流的速度是每小时(千米),乙船在静水中的速度是每小时(千米),所以乙船往返一次所需要的时间是(小时).22.24千米【详解】在两船的船速相同的情况下,一船顺水,一船逆水,它们的航程差是什么造成的呢?不妨设甲船顺水,乙船逆水.甲船的顺水速度船速水速,乙船的逆水速度船速水速,故:速度差(船速水速) (船速水速)水速,即:每小时甲船比乙船多走(千米).3小时的距离差为(千米).23.5小时;5千米【分析】(1)首先根据顺流时间和路程可以求出顺流速度,再减去10即可求出货轮逆流时的速度;用甲、乙两港的总路程除以逆流时的速度就是返回时用的时间,减去顺流时用的时间即可求出结果;(2)水流速度=(顺水速度-逆水速度)÷2,据此代入数据解答即可。【详解】顺流速度:208÷8=26(千米/时)逆流速度:26-10=16(千米/时)返回时比去时多行:208÷16-8=13-8=5(小时)10÷2=5(千米/时)答:返回时比去时多行5小时,水流的速度是每小时5千米。【点睛】这道题主要考查了学生对于“水速的基本公式”这个知识点的掌握情况,解决这道题的关键是要知道“速度=路程÷时间” “时间=路程÷速度”,“水流速度= (顺水速度一逆水速度)÷2”。24.54级【详解】略25.1125千米【分析】先根据顺水速度和水速,可求船速为每小时25-5=20千米;再根据船速和水速,可求出逆水速度为每小时行20-5=15千米;又已知“逆流而上用了75小时”,所以上海港与武汉港相距15×75=1125千米。【详解】(25-5-5)×75=15×75=1125(千米)答:上海港与武汉港相距1125千米。【点睛】此类问题解答的关键是牢记数量关系式:顺流速度-水速=船速(静水速),静水速-水流速=逆流速。26.35千米【分析】已知顺水航行每小时行40千米,逆水航行每小时行30千米,直接用公式“(顺速+水速)÷2=船速”算出这艘船在静水中的速度即可。【详解】(40+30)÷2=70÷2=35(千米)答:这艘船在静水中的速度是每小时行35千米。27.25千米【详解】首先应该知道水的速度就是物品的速度,船与物品的相对速度(单位时间的距离变化)与船的静水速度相等.而从两船出发到甲船掉头,此外,两船之间无论顺水速度差、静水速度差还是逆水速度差都相等,所以两船之间的距离总是保持60千米不变.由于甲、乙两船同时碰到物品,所以从甲掉头到两船相遇,两船与物品的距离总是相等的,甲船掉头之时,两船距离物品都是30千米,甲船到物品30千米这段距离的产生时间,相当于船在静水中航行30千米的时间,在这段时间内,河水流动了30÷6=5千米,所以甲掉头时,已经行驶了30-5=25千米.28.6.4小时【分析】根据两个码头之间的距离与A码头到B码头逆水行8小时,可以求出这艘船的逆水速度;逆水速度等于船速减去水速,已知船速是水速的9倍,则船速与水速相差了(9-1)倍,说明逆水速度刚好相当于水速的(9-1)倍,因此可以求出水速。根据逆水速度与水速,又可求出顺水速度,然后再进一步解答即可。【详解】根据题意可得:逆水速度是:128÷8=16(千米/时)根据差倍公式,可求:水速:16÷(9-1)=16÷8=2(千米/时)顺水速度:16+2+2=20(千米/时)返回时间是:128÷20=6.4(小时)答:这只船从甲码头返回乙码头需要6.4小时。【点睛】逆水速度,就是船速与水速的差,此题要想求出逆水速度,要熟练掌握差倍公式可,继而可以求出顺水速度。29.2.5千米/小时【详解】两次航行都用 16 时,而第一次比第二次顺流多行 60 千米,逆流少行 40 千米,这表明顺流行60 千米与逆流行 40 千米所用的时间相等,即顺流速度是逆流速度的 1.5 倍.将第一次航行看成是 16 时顺流航行了 120+80×1.5=240(千米),由此得到顺流速度为 240÷16=15(千米/时),逆流速度为15÷1.5=10(千米/时),最后求出水流速度为(15-10)÷2=2.5(千米/时).30.15小时【分析】根据小渔船顺流的时间和路程可以求出船的顺水速度,再根据船逆流的时间和路程求出船的逆水速度,再根据和差问题即可求出渔船的船速和第一天的水速。【详解】船顺流速度:140÷10=14(千米/小时),船逆流速度:140÷14=10(千米/小时)船速:(14+10)÷2=24÷2=12(千米/小时),第一天的水速:(14—10)÷2=4÷2=2(千米/小时)第二天逆流120千米所需要的时间:120÷(12—2×2)=120÷(12—4)=120÷8=15(小时)答:逆流而上120千米需要15小时。【点睛】关键是根据船在静水中的速度=(船的顺水速度+船的逆水速度)÷2,水流速度=(船的顺水速度-船的逆水速度)÷2求出船速和第一天的水速,此题就迎刃而解了。31.6小时【分析】把从A到B的路程看做单位“1”,因为甲船顺流而下需要3小时,所以甲船顺流速度是1÷3=,甲船静水速度是水速的11倍,因为顺流速度=船速(静水速度)+水速,所以甲船顺流速度是水速的11+1=12倍,即可求出水速÷12=,进而也可以求出乙船在静水中的速度,那么乙船逆流而上的时间也可以求出来了。【详解】甲船顺流速度:1÷3=水速:÷(11+1)=÷12=乙船逆流速度:×7-=×(7-6)=×6=乙船逆流而上的时间:1÷=6(小时)【点睛】此题把从A到B的路程看做单位“1”,运用顺流速度、逆流速度、船速、水速之间的倍数关系逐步解答。32.船速22千米/小时,水速4千米/小时【分析】由题意可知,船从甲港到乙港是顺水,其速度为234÷9=26千米/时,从乙港返回甲港为逆水,速度为234÷13=18千米/时;再根据“逆水行船问题”公式求的船速和水速即可。【详解】从甲到乙顺水速度:234÷9=26(千米/小时)从乙到甲逆水速度:234÷13=18(千米/小时)船速是:(26+18)÷2=44÷2=22(千米/小时)水速是:(26-18)÷2=8÷2=4(千米/小时)答:船速22千米/小时,水速4千米/小时。【点睛】灵活运用“逆水行船问题”公式是解答本题的关键。33.5小时【分析】本题是一道追及问题,要求的是追及时间,追及时间=路程差÷速度差。因为两船都是逆流而上,所以两船的速度差仍然和水流速度无关,是两船的静水中的速度差。【详解】50÷(40—30)=50÷10=5(小时)答:出发后5小时乙追上甲。【点睛】本题关键是理清两船都是逆流或顺流时,两船的速度差仍是两船在静水中的速度差。34.0.3千米【详解】两游艇相向而行时,速度和等于它们在静水中的速度和,所以它们从出发到相遇所用的时间为小时.相遇后又经过4小时,甲艇到达乙艇的出发地,说明甲艇逆水行驶27千米需要小时,那么甲艇的逆水速度为(千米/小时),则水流速度为(千米/小时).35.2小时【分析】本题是一道相遇问题,要求的是相遇时间,相遇时间=总路程÷速度和。因为两船是相向而向,一艘船是逆水,一艘船是顺水,不管是哪艘船顺水,甲、乙两船的速度和都和水流速度没有关系,都是两艘船在静水中的速度和。【详解】180÷(40+50)=180÷90=2(小时)答:出发后2小时相遇。【点睛】此题要理清甲、乙两船的速度和是两艘船在静水中的速度和。36.上坡24千米/小时,下坡40千米/小时【详解】后一小时比前一小时多行12千米,说明前一小时小明走上坡,差6千米走完全程,后一个小时走上坡路6千米,然后下坡走完一个全程.前一个小时在上坡,走了(千米),故上坡的速度为(千米/小时),后一个小时中先有6千米在上坡,用时(小时),剩下的(小时)中全部是在走下坡路,且走了30千米,故下坡的速度为(千米/小时).37.13小时【分析】本题中的甲船的速度、乙船的速度、水的速度、A、B两个码头之间的距离都不知道,只知道甲、乙两船的速度和水速之间的关系,所以我们可以把水速设为1千米/小时,则甲船的速度是11×1=11(千米/小时),乙船的速度是:7×1=7(千米/小时),两船出发后6小时第一次相遇,所以A、B两个码头之间的距离是6×(11+7)=108(千米)甲、乙两船相遇后,甲船还需要再行驶(108—12×6)÷12=3(小时)到达B码头,乙船已经离开B码头:(6+3)×(7—1)=54(千米),正好走了一半的路程,乙船还需要再行驶9小时才能到达A码头,甲船在这9小时的时间内逆流而上行驶了:9×(11—1)=90(千米),离A码头还有108—90=18(千米),甲船继续逆流而上,乙船顺利而下,两船变成了相遇问题,相遇时间=18÷(11+7)=1(小时),所以第一次相遇与第二次相遇之间时间是:9+3+1=13(小时)。【详解】(108—12×6)÷12+6=(108—72)÷12+6=36÷12+6=3+6=9(小时)[108—9×(11—1)]÷(11+7)=[108—9×10]÷18=[108—90]÷18=18÷18=1(小时)9+3+1=13(小时)答:第一次相遇后,再过13小时两船第二次相遇。【点睛】我们可以把水速设为1千米/小时,甲、乙两船的速度在变化,所以逐步分析两船行驶的路程和速度。38.20分钟【详解】该人与水壶的距离=二者速度和×时间=20×该人的静水速度.该人发现水壶丢失后返回,与水壶一同顺流而下.二者速度差=该人的静水速度.所以他返回寻水壶用了的时间=20×该人的静水速度÷该人的静水速度=20(分钟).39.20公里【详解】解:设原水速为每小时x公里,甲乙两港相距y公里;因路程一定,时间与速度成反比例,平时逆水航行与顺水航行所用的时间比为2:1,所以平时逆水航行与顺水航行的速度比为1:2;故得方程:(8-x):(8+x)=1:2解得,又因暴雨时的水速为原来的2倍,再据往返两地的时间为9小时,可得方程:解得,;答:甲乙两港相距20公里.【点睛】此题主要考查流水行船问题,关键是弄清楚:顺水速=静水速+水速,逆水速=静水速-水速.40.甲船18千米/小时,乙船12千米/小时【详解】相向而行时的速度和等于两船在静水中的速度之和,同向而行时的速度差等于两船在静水中的速度之差,所以,两船在静水中的速度之和为:(千米/时),两船在静水中的速度之差为:(千米/时),甲船在静水中的速度为:(千米/时),乙船在静水中的速度为:(千米/时).41.24千米【详解】乙船逆水时候的速度(千米/时),甲船逆水时候的速度(千米/时),两船逆水速度比为:,所以乙船到港时甲船行了.乙船顺水速度与甲船逆水速度比为:,乙船返回到两船相遇,乙船行了,所以甲船小时共行了,,两港相距(千米).42.4小时【详解】这只船的逆水速度为:(千米/时)水速为:(千米/时)返回原处所需时间为:(小时).43.18小时【详解】本题中船在顺水、逆水、静水中的速度以及水流的速度都可以求出.但是由于暴雨的影响,水速发生变化,要求船逆水而行要几小时,必须要先求出水速增加后的逆水速度.船在静水中的速度是:(180÷10+180÷15)÷2=15(千米/小时).暴雨前水流的速度是:(180÷10-180÷15)÷2=3(千米/小时).暴雨后水流的速度是:180÷9-15=5(千米/小时).暴雨后船逆水而上需用的时间为:180÷(15-5)=18(小时).44.12.5千米或10千米【分析】此题没有明确指出的位置,所以应该分情况进行讨论.【详解】根据题意,船在顺流时行1千米需要小时,逆流时行1千米需要小时.如果地在之间,则船继续逆流而上到达地所用的总时间为小时,所以此时、两地间的距离为:千米.如果地在之间,则船逆流而上到达地所用的时间为小时,所以此时、两地间的距离为:千米.故、两地间的距离为千米或者10千米.45.6小时【分析】甲乙两船相向而行,一个顺水一个逆水,顺水的速度=船速+水速,逆水的速度=船速-水速,即速度和中水速抵消为0,根据“时间=路程÷速度和”直接代入数据求解即可。【详解】360÷(24+36)=360÷60=6(小时)答:6小时相遇。46.456千米【详解】甲船顺水行驶全程需要:(小时),乙船顺水行驶全程需要:(小时).甲船到达港时,乙船行驶(小时),还有小时的路程(48千米)①,即乙船与甲船的相遇路程.甲船逆水与乙船顺水速度相等,故相遇时在相遇路程的中点处②,即距离港24千米处,此处距离港(千米).①关键是求甲船到达港后乙离港还有多少距离②解决①后,要观察两船速度关系,马上豁然开朗.这正是此题巧妙之处,如果不找两船速度关系也能解决问题,但只是繁琐而已.47.8小时【分析】由距离和顺水航行时间可以求出顺水速度。根据顺水速度=船速+水速,以及船速与水速的倍数关系,利用和倍公式,可以分别求出船速和水速以及逆水速度,进而求出逆水航行需要的时间。【详解】顺水速度:112÷7=16(千米/时)水速:16÷(15+1)=16÷16=1(千米/时)船速:1×15=15(千米/时)逆水速度:15-1=14(千米/时)逆水航行需要的时间:112÷14=8(小时)答:这只船从乙港返回甲港要用8小时。【点睛】流水行船是行程问题的一种,熟练掌握公式:路程=顺水速度×顺水时间=逆水速度×逆水时间;顺水速度=船速+水速是解答本题的关键。这类问题中还经常用到和倍、差倍相关公式,要灵活选择公式方便求解。48.250米;50米;【分析】根据题中“家距离商场6000米.去的时候顺风用了20分钟,”我们用6000÷20,就可以求到他顺风每分钟行300米;再根据“他估计若照这样的骑车速度,返回将需要30分钟,”我们用6000÷30,就可以求到他逆风每分钟行200米.接着运用“静风速度=(顺风速度+逆风速度)÷2”这个关系式去求静风速度.最后运用“风速=顺风速度—静风速度”这个关系式去求风速.【详解】顺风每分钟行的米数:6000÷20=300(米)逆风每分钟行的米数:6000÷30=200(米)静风速度:(300+200)÷2=250(米)风速度:300—250=50(米)答:他在静风中每分钟行驶250米,风速是每分钟50米.49.25千米【详解】如下画出示意图有AB段顺水的速度为11+1.5=12.5千米/小时,有BC段顺水的速度为3.5+1.5=5千米/小时.而从AC全程的行驶时间为8-1=7小时.设AB长千米,有,解得=25.所以A,B两镇间的距离是25千米.50.100 千米【分析】刚开始甲船是顺流而下,乙船是逆流而上,所以到甲船到达B码头时,乙船离B码头还有:540÷(50+10)×(40—10)=270(千米),此后甲、乙两船都是逆流而上,乙到达A码头还需要270÷(40—10)=9(小时),在这9小时的时间内,甲船逆流行驶了9×(50—10)=360(千米),这时乙船在A码头,甲、乙两船之间的距离是540—360=180(千米),乙船顺流而下,甲船继续逆流而上,两船又变成了相遇问题,可以求出两船第二次相遇的时间,进而也可以求出第二次相遇的地点离A码头的距离。【详解】甲船到达B码头时,乙船离A码头的距离:540—540÷(50+10)×(40—10)=540—540÷60×30=540—9×30=270(千米)乙船到达A码头时,甲船离A码头的距离:540—270÷(40—10)×(50—10)=540—270÷30×40=540—9×40=180(千米)第二次迎面相遇地点离A的距离:180÷(50+40)×50=180÷90×50=2×50=100(千米)答:出发后甲、乙第二次迎面相遇地点离A100千米。【点睛】本题的关键是甲、乙两船的速度在变化,所以要逐步分析船的行驶过程。51.25小时【详解】(20-12)÷2=4(千米)240÷(20+4)+240÷(20-4)=25(小时)52.20小时【详解】顺水速度:(千米/时)逆水速度:(千米/时)静水速度:(千米/时)该船在静水中航行320千米需要(小时)53.21千米/时【分析】路程÷时间=速度,根据题干提供的数据,很容易可以求出顺水速度和逆水速度;顺水速度减去逆水速度再除以2即可求得水流速度,进而题目得解。【详解】顺水速度:432÷18=24(千米/时)逆水速度:432÷24=18(千米/时)水流速度:(24-18)÷2=6÷2=3(千米/时)船速:24-3=21(千米/时)答:船速是21(千米/时)。【点睛】熟练掌握流水行船问题的一般公式:船速=(顺水速度-逆水速度)÷2是解答本题的关键。54.2.5千米小时【分析】一艘轮船顺水航行这段路程用了15小时,逆水航行这段路程用了20小时,根据“速度=路程÷时间”分别计算出顺水速度和逆水速度。则水速=(顺水速-逆水速)÷2【详解】300÷15=20(千米/小时)300÷20=15(千米/小时)(20-15)÷2=5÷2=2.5(千米/小时)答:此时的水速是2.5千米/小时55.顺水30千米/小时,逆水24千米/小时【详解】由题意知顺水速度与逆水速度比为设顺水速度为份,逆水速度为份,则水流速度为份恰好是千米/时所以顺水速度是(千米/时),逆水速度为(千米/时)56.6小时;42小时【分析】此题为水中相遇问题和追及问题,甲、乙两船一个顺流,一个逆流,那么它们的速度和为甲、乙两只小船在静水中速度的和,而水中的追击问题不论两船同向逆流而上还是顺流而下速度差均为甲、乙两只小船在静水中速度的差,因此用路程÷速度和=相遇时间,路程÷速度差=追及时间【详解】相遇时间:168÷(12+16)=6(小时)追及时间:168÷(16-12)=42(小时)答:6小时相遇;42小时乙船追上甲船.57.0.2千米【详解】两游艇相向而行时,速度和等于它们在静水中的速度和,所以它们从出发到相遇所用的时间为小时相遇后又经过4小时,甲艇到达乙艇的出发地,说明甲艇逆水行驶18千米需要小时那么甲艇的逆水速度为(千米/小时),水流速度为(千米/小时)答案第1页,共2页答案第1页,共2页 展开更多...... 收起↑ 资源预览