【小升初典型奥数】比例问题(含解析)-2024-2025学年六年级下册数学北师大版

资源下载
  1. 二一教育资源

【小升初典型奥数】比例问题(含解析)-2024-2025学年六年级下册数学北师大版

资源简介

小升初典型奥数 比例问题
1.小王、小明、小军春游结束后,三人从学校合乘一辆出租车回家.三人商定,出租车费要合理分摊.小王在全程的处下车,小明在全程的处下车,小军在终点下车,车费共46元.请你设计三人车费的分摊方案.
2.在商场里甲开始乘自动扶梯从一楼到二楼,并在上向上走,同时乙站在速度相等的并排扶梯从二层到一层.当甲乙处于同一高度时,甲反身向下走,结果他一共走了60级,如果他一直走到顶端再反身向下走,则一共要走80级,那么,自动扶梯不动时从下到上要走多少级?
3.甲、乙二人分别从A、B两地同时出发相向而行,5小时后相遇在C点.如果甲速度不变,乙每小时多行4千米,且甲、乙还从A、B两地同时出发相向而行,则相遇点D距C点10千米;如果乙速度不变,甲每小时多行3千米,且甲、乙还从A、B两地同时出发相向而行,则相遇点E距C点5千米.问:甲原来的速度是每小时多少千米?
4.某水果批发市场存放的苹果与桃子的吨数的比是,第一天售出苹果的,售出桃子的吨数与所剩桃子的吨数的比是;第二天售出苹果吨,桃子吨,这样一来,所剩苹果的吨数是所剩桃子吨数的,问原有苹果和桃子各有多少吨?
5.一把小刀售价元.如果小明买了这把小刀,那么小明与小强剩余的钱数之比是;如果小强买了这把小刀,那么两人剩余的钱数之比变为.小明原来有多少钱?
6.某商品76件,出售给33位顾客,每位顾客最多买三件,买 1件按定价,买2件降价 10%,买 3件降价 20%.最后结算,平均每件恰好按原定价的 85%出售,那么买3件的顾客有多少人?
7.A、B两地相距24千米,甲和乙两人分别由A、B两地同时相向而行,往返一次,甲比乙早返回原地.途中两人第一次相遇于C点,第二次相遇于点D.CD相距6千米,则甲、乙两人的速度比是为多少?
8.一辆汽车从甲地到乙地行驶了6小时,由乙地返回甲地每小时加快8千米,结果少用1小时.求甲、乙两地的距离.
9.某商场有一部自动扶梯匀速由下而上运动,甲乙二人都急于上楼办事,因此在扶梯的同时匀速登梯,甲登了55级后到达楼上,乙登梯速度是甲的2倍(单位时间乙登梯级数是甲的2倍),他登了60级后到达楼上,求自动扶梯的级数?
10.加工某种零件,甲分钟加工个,乙分钟加工个,丙分钟加工个.现在三人在同样的时间内一共加工个零件.问:甲、乙、丙三人各加工多少个零件
11.甲本月收入的钱数是乙收入的,甲本月支出的钱数是乙支出的,甲节余240元,乙节余480元.甲本月收入多少元?
12.一架飞机从甲城飞往乙城,每小时飞行800千米.返回时,每小时飞行速度减慢到700千米,比去时多用了0.3小时.甲、乙两城相距多少千米?
13.甲、乙二人步行远足旅游,甲出发后1小时,乙从同地同路同向出发,步行2小时到达甲于45分钟前曾到过的地方。此后乙每小时多行500米,经过3小时追上速度保持不变的甲。甲每小时行多少米?
14.一个容器内注满了水。将大、中、小三个铁球这样操作:第一次,沉入小球;第二次,取出小球,沉入中球;第三次,取出中球,沉入大球。已知第一次溢出的水量是第二次的3倍,第三次溢出的水量是第一次的2倍。求小、中、大三球的体积比。
15.有一堆围棋棋子,其中黑子与白子个数的比是4∶3.从中取出91枚棋子,且黑子与白子个数的比是8∶5,而剩下的棋子中黑子与白子个数的比是3∶4.那么这堆围棋共有多少枚?
16.一个平行四边形与一个三角形底边长的比是1:5,高的比是2:3.它们的面积比是多少?
17.某团体有100名会员,男会员与女会员的人数之比是14∶11,会员分成三个组,甲组人数与乙、丙两组人数之和一样多.各组男会员与女会员人数之比是:
甲组12∶13,乙组5∶3,丙组2∶1,那么丙有多少名男会员?
18.大巴和轿车都从A地出发驶向B地,大巴与轿车的速度之比为5∶6。大巴比轿车早出发18分钟,但在AB的中点C处停留了8分钟,轿车则不停的驶向B地。如果大巴和轿车的速度都不变,大巴将比轿车晚2分钟到达B地。
(1)轿车出发多少分钟后追上大巴?
(2)如果轿车追上大巴后,速度增加,且轿车到达B地后立即原路返回A地,当轿车再次与大巴相遇时,大巴已经行驶了全程的几分之几?
19.甲、乙两辆汽车同时从A、B两地相向而行,甲行到全程的 的地方与乙相遇.甲每小时行30千米,乙行完全程需7小时.求A、B两地之间的路程.
20.一列货车和一列客车同时从甲乙两地相向开出,已知客车的速度是货车的速度的,两车相遇时,客车比货车少行8千米.求甲、乙两地间的距离.
21.有若干个突击队参加某工地会战,已知每个突击队人数相同,而且每个队的女队员的人数是该队的男队员的,以后上级从第一突击队调走了该队的一半队员,而且全是男队员,于是工地上的全体女队员的人数是剩下的全体男队员的,问开始共有多少支突击队参加会战?
22.甲、乙两仓库共存粮600吨,甲仓库的存粮比乙仓库少,求甲、乙两仓库各存粮多少吨?
23.大、小两瓶油共重2.7千克.小瓶用0.3千克后,大瓶油与小瓶油剩下的重量比是2:1.小瓶原来有油多少千克?
24.甲乙丙三人同去商场购物,甲花钱数的等于乙花钱数的,乙花钱数的等于丙花钱数的,结果丙比甲多花钱93元,问他们三人共花了多少钱?
25.在商场里,小明从正在向上移动的自动楼梯顶部下120级台阶到达底部,然后从底部上90级台阶回到顶部.自动楼梯从底部到顶部的台阶数是不变的,假设小明单位时间内下的台阶数是他上的台阶数的2倍.则该自动楼梯从底到顶的台阶数为多少?
26.猎犬发现在离它10米远的前方有一只狂跑着的野兔,立刻追赶.猎犬的步子大,它跑2步的路程,兔子要跑3步;但是兔子的动作快,猎犬跑3步的时间,兔子能跑4步.问猎犬至少要跑多少米方能追上野兔?
27.一个水箱,用甲、乙、丙三个水管往里注水。若只开甲、丙两管,甲管注入18吨水时,水箱已满;若只开乙、丙两管,乙管注入27吨水时,水箱才满。又知,乙管每分钟注水量是甲管每分钟注水量的2倍。则该水箱最多可容纳多少吨水?
28.甲乙两人植树,单独植完这批树,甲比乙所需时间多,如果两人一起干,完成任务时乙比甲多植36棵,这批树一共多少棵?
29.小张、小李和小王于某日上午分别步行、骑自行车和开汽车从A地出发沿公路向B地匀速前进.已知小李比小张晚1小时出发,小王比小李晚45分钟出发.他们三人恰在中途某地相遇.若小李比小张早到达B地24分钟,则小王比小张早多少分钟.
30.甲、乙两人在10年前的年龄比为2:3,现在他俩的年龄比为3:4,那么10年后他俩的年龄比为多少?
31.客车和货车同时从A、B两地相对开出,货车的速度是客车的.两车在离两地中点30千米处相遇.A、B两地相距多少千米?
32.师徒二人加工一批零件,师傅加工一个零件用9分钟,徒弟加工一个零件用15分钟.完成任务时,师傅比徒弟多加工100个零件,求师傅和徒弟一共加工了多少个零件?
33.有一只底面半径是20厘米的圆柱形水桶,里面有一段半径是5厘米的圆柱体钢材浸在水中.钢材从水桶里取出后,桶里的水下降了6厘米.这段钢材有多长?
34.甲、乙两人分别从A、B两地相向而行,甲行了全程的,正好与乙相遇,已知甲每小时行4.5千米,乙行完全程要5.5小时,求A、B两地相距多少千米?
35.航模一班和航模二班的人数比为8∶7,如果将航模一班的8名同学调到航模二班去,那么航模一班与航模二班人数比为4∶5,原来这两班各有多少人?
36.某学校入学考试,参加的男生与女生人数之比是. 结果录取91人,其中男生与女生人数之比是.未被录取的学生中,男生与女生人数之比是. 问报考的共有多少人?
37.甲容器中有纯酒精11升,乙容器有水9升.第一次将甲容器中的一部分纯酒精倒入乙容器使酒精和水混合;第二次将乙容器中的一部分混合液倒入甲容器.这样,甲容器中纯酒精含量为62.5%,乙容器中纯酒精含量为25%,那么,第二次从乙容器倒入甲容器的混合液是多少升?
38.(2008年清华附中考题)在下降的电梯中称重,显示的重量比实际体重减少;在上升的电梯中称重,显示的重量比实际体重增加.小明在下降的电梯中与小刚在上升的电梯中称得的体重相同,小明和小刚实际体重的比是?
39.甲乙两人同时从A、B两地出发,甲每分钟行80米,乙每分钟行60米,两人在途中C点相遇.如果甲晚出发7分钟,两人将在途中D处相遇,且A、B中点E到C点的距离是到D点距离的2倍.求A、B两地间距离.
40.A、B、C三辆汽车以相同的速度同时从甲市开往乙市,开车后1小时A车出了事故,B和C车照常前进,A车停车修理半小时后以原速度的继续前进,B、C两车行至距离甲市200千米处B车出了事故,C车照常前进,B车停了半小时后也以原速度的继续前进,结果到达乙市的时间C车比B车早1小时,B车比A车早1小时,求甲、乙两市的距离为多少千米?
41.学校四五六年级共有615名学生,已知六年级学生的,等于五年级学生的,等于四年级学生的.这三个年级各有多少名学生?
42.甲、乙、丙三人进行200米赛跑,当甲到终点时,乙离终点还有40米,丙离终点还有50米,如果甲、乙、丙赛跑的速度都不变,那么当乙到达终点时,丙离终点还有多少米?
43.有一个长方体,长和宽的比是,宽与高的比是.表面积为,求这个长方体的体积.
44.一次甲、乙、丙三位朋友乘一辆出租车出去办事,出发时三人商量好,车费由三人合理分摊.甲在行到6千米的地方下车,乙在行到12千米的地方下车,丙一直行到18千米的地方下车,共付了36元车费.请问:三人应该分别承担多少元?
45.在甲、乙、丙三缸酒精溶液中,纯酒精的含量分别占、和,已知三缸酒精溶液总量是千克,其中甲缸酒精溶液的量等于乙、丙两缸酒精溶液的总量.三缸溶液混合后,所含纯酒精的百分数将达.那么,丙缸中纯酒精的量是多少千克?
46.A、B两地间有一座桥,甲、乙两人分别从A、B两地同时出发,3小时后在桥上相遇.如果甲加快速度,每小时多行2千米,而乙提前0.5小时出发,则仍旧在桥上相遇.如果甲延迟0.5小时出发,乙每小时少走2千米,还会在桥上相遇,则A、B两地相距多少千米?
47.师徒两人一直加工200个零件,师傅加工一个零件要用3分钟,徒弟加工一个零件要用5分钟.试问,当完成任务时,两人各加工多少个零件?
48.小明和小强原有的图画纸之比是4∶3,小明又买来15张.小强用掉了8张,现有的图画纸之比是5∶2.问原来两人各有多少张图画纸?
49.一批零件平均分给甲、乙两人同时加工,两人工作小时,共完成这批零件的。已知甲与乙的工作效率之比是,那么乙还要几小时才能完成分配的任务?
21世纪教育网(www.21cnjy.com)
21世纪教育网(www.21cnjy.com)
参考答案:
1.小王应分摊6元,小明应分摊16元,小军应分摊24元.
【详解】∶∶1=3∶8∶12 3+8+12=23 46×=6(元) 46×=16(元) 46×=24(元)
2.30级
【详解】向上走速度为甲和自动扶梯的速度和,向下走速度为甲和自动扶梯的速度差.当甲乙处于同一高度时,甲反身向下走,结果他一共走了60级,如果他一直走到顶端再反身向下走,则一共要走80级,60÷80=3/4,这说明甲乙处于同一高度时,甲的高度是两层总高度的3/4.则甲和自动扶梯的速度和与自动扶梯的速度之比是3/4:(1-3/4)=3:1,即甲的速度与自动扶梯速度之比2:1,甲和自动扶梯的速度差与自动扶梯的速度相等.向下走速度向上走速度的1/3,所用时间为向上走的3倍,则甲向下走的台阶数就是向上走台阶数的3倍.因此甲向上走了80÷(3+1)=20级台阶.甲的速度与自动扶梯速度之比2:1,甲走20级台阶的同时自动扶梯向上移动了10级台阶,因此如果自动扶梯不动,甲从下到上要走20+10=30级台阶.
3.11千米
【详解】三种相遇方式两人行程距离,行程时间都不相同,所以应该将其中一项化为相等.
当乙每小时多行4千米时,5小时可以多行20千米,所以当两人相遇后继续向前走,5小时的时候甲可以走到C点,乙可以走过了C点20千米.相遇点D距C点10千米,因此两人相遇后各走了10千米,所以甲乙二人速度相等,即原来甲比乙每小时多行4千米.同理,当甲每小时多行3千米,则5小时可以多行15千米,所以当两人相遇后继续向前走,5小时的时候乙可以走到C点,甲可以走过了C点15千米.而相遇点E距C点5千米,因此两人相遇后甲走了10千米,乙走了5千米.甲、乙两人的速度比为2:1.
于是题目就化为一道简单的差倍问题.
(4+3)÷(2-1)+4=11(千米/小时)
所以甲原来的速度是每小时11千米.
【点睛】此题事实上利用了假设法:假设两人相遇后继续相前走,由于时间一样,利用两人前后的路程差与速度成正比得出两个速度关系,然后利用差倍问题或按比例分配得出最后答案.
4.74吨;37吨
【分析】本题可以理清题中数量关系,用方程方法求解;也可以用比例的方法分析求解。
【详解】法一:
解:设原来苹果有吨,则原来桃子有吨,得:
解得
所以原有苹果37吨;
原有桃子(吨)
答:原来苹果有37吨,桃子有74吨。
法二:原来苹果和桃子的吨数的比是,把原来的苹果的吨数看作1,则原来桃子的吨数为2,第一天后剩下的苹果是,剩下的桃子是,所以此时剩下的苹果和桃子的重量比是.现在再售出苹果18吨,桃子12吨,所剩的苹果与桃子的重量比是.这就相当于第一天后剩下的苹果和桃子的重量比是,先售出桃子12吨,苹果吨,此时剩下的苹果和桃子的重量比还是,再售出吨苹果,剩下的苹果和桃子的重量比变为,所以这相当于份,最后剩下的桃子有吨,那么第一天后剩下的桃子有吨,原有桃子吨,原有苹果吨。
答:原来苹果有37吨,桃子有74吨。
【点睛】本题较为复杂,要仔细分析数量间的等量关系。
5.12
【详解】由已知,小强的钱相当于小明、小强买刀后所剩钱数和的,小明的钱相当于小明、小强买刀后钱数和的,所以小明、小强的钱数的比值为,而小明买刀后小明、小强的钱数之比为,所以小明买刀前后的钱数之比为,所以小刀的售价等于小明原来钱数的,所以小明的钱数为元.也可这样看,小明买刀与未买刀的钱数比为,小明的钱数为(元)
6.14位
【详解】题目已给出平均数 85%,可作比较的基准.
1人买3件少 5%×3;
1人买2件多 5%×2;
1人买1件多 15% ×1.
1人买3件与1人买1件成A组,即按1∶1比例,2人买3件与3人买2件成B组,即按2∶3的比例.
A组是2人买4件,每人平均买2件.
B组是5人买12件,每人平均买2.4件.
现在已建立了一个鸡兔同笼型问题:总脚数76,总头数33,兔脚数2.4,鸡脚数2.
B组人数是:(76-2×33)÷(24-2)= 25(人)
其中买3件25×=10(人)
买2件25×=15(人)
A组人数是 33-25=8(人),其中买 3件4人,买 1件4人.
10+4= 14(人).
答:买3件的顾客有14位.
7.9︰7
【详解】因为甲比乙早返回原地,甲的速度比乙快,第二个相遇点D应该比C更靠近A点.由于相关数量未知,首先假设第一次相遇时甲和乙分别行走了x千米和y千米.可得:x+y=24①
由假设可得:第二次相遇时,甲、乙分别行走了3x千米和3y千米,那么甲返回时走了3x-(x+y)=2x-y,第二个相遇点距B点(2x-y)千米,这段距离比y多6千米,所以有:(2x-y)-y=6②
联立①②两个方程能得到:x=13.5,y=10.5,所以两人的速度比为9︰7.
8.240千米
【详解】返回时间6-1=5小时,往返时间比=6:5;往返的速度比=5:6
8÷(6-5)×5×6=240(千米)
9.66级
【详解】乙与甲的时间比为60/2:55/1=30:55,甲与乙走过的级数差5级,是由于扶梯自动运行的时间差导致的,时间差为25个单位,那么5个时间单位扶梯自动缩进1级,30个时间单位缩进6级,那么级数为60+6=66,或者55+55÷5=66.
10.1400个;1200个;1050个
【详解】根据题意可知,甲、乙、丙的工作效率之比为,那么在相同的时间内,三人完成的工作量之比也是,所以甲加工了个零件,乙加工了个零件,丙加工了个零件。
11.600
【详解】甲、乙本月收入的比是,分别节余240元和480元,支出的钱数之比是.如果乙节余480元,甲节余元,那么两人支出的钱数之比也是,现在甲只节余240元,多支出了60元,结果支出的钱数之比从变成了(即),所以这60元就对应份,那么甲支出了元,所以甲本月收入为元.
12.1680千米
【详解】往返的速度比是800:700=8:7,往返的时间比=7:8;
0.3÷(8-1)×7×800=1680(千米)
13.4000米
【分析】乙加速之前步行2小时的路程等于甲步行2.25小时的路程,得到甲、乙速度之比2︰2.25,乙的速度是甲的速度的1.125倍;加速之后乙加速之后步行3小时的路程等于甲步行3.75小时的路程,甲乙速度比为3︰3.75,乙的速度是甲的速度的1.25倍,由于乙加速后每小时多走500米,所以甲的速度为500÷(1.25-1.125),依此计算即可。
【详解】加速前甲乙的速度之比为2︰2.25=8︰9,乙的速度是甲的速度的1.125倍;
加速后甲乙的速度比为3︰3.75=4︰5,乙的速度是甲的速度的1.25倍,
甲的速度为500÷(1.25-1.125)
=500÷0.125
=4000(米/时),
答:甲每小时行4000米。
【点睛】先求出甲乙二人的速度比是解答此题的关键。
14.3∶4∶10
【分析】第一次溢出的水量的体积相当于是小球的体积;第二次溢出的水量的体积相当于是中球体积减去小球体积;第三次溢出的水量的体积相当于是大球体积减去中球体积。
【详解】设第二次溢出的水量是1份,那么第一次溢出的水量是3份,第三次溢出的水量是6份;
那么小球体积是3份,中球的体积为3+1=4份,大球体积是4+6=10份;
所以小中大三球的体积比是3∶4∶10。
答:小、中、大三球的体积比是3∶4∶10。
【点睛】本题考查的是比的应用与排水问题,当容器注满水时,溢出的水的体积就是物体的体积。
15.119枚
【详解】设这堆围棋棋子中黑子4x枚,那么白子3x枚.而在取出的91枚中,黑子有,白子有91-56=35(枚),由题意可得:
(4x-56)∶(3x-35)=3∶4
9x-105=16x-224
即x=17
7x=7×17=119(枚)
答:这堆围棋子共有119枚.
16.4∶15
【详解】设平行四边形的底边长是1,高是2;那么三角形底边长是5,高是3
平行四边形与三角形的面积之比是:
(1×2):(5×3÷2)=864:875.
答:它们的面积比是4∶15.
17.12名
【详解】略
18.(1)50分钟;(2)
【分析】(1)通过题意可知,大巴车相当于比轿车早出发(18-8)分钟,大巴车不停地驶向B地,已知如果大巴和轿车的速度都不变,大巴将比轿车晚2分钟到达B地,则同样行驶完AB的路程,大巴车所花时间比轿车多花(18-8+2)分钟,根据路程相同,速度比等于时间的反比,所以大巴与轿车的速度之比为5∶6,大巴与轿车的时间之比是6∶5,所以大巴车所花时间比轿车多花(6-5)份时间,据此根据比的应用,用(18-8+2)÷(6-5)即可求出每份是多少,进而求出6份和5份,也就是大巴与轿车分别行驶完全程需要的时间,轿车追上大巴时,大巴已离开C地,大巴车相当于比轿车早出发(18-8)分钟,轿车追上大巴车时,两车的时间差是(18-8)分钟,根据路程相同,速度比等于时间的反比,大巴与轿车的时间之比是6∶5,也就是两车的时间差是(6-5)份,根据比的应用,用(18-8)÷(6-5)即可求出每份是多少,进而求出5份,也就是轿车追上大巴车需要的时间。
(2)把全程看作单位“1”,已知轿车出发追上大巴车时需要50分钟,而轿车行驶完全程需要60分钟,所以用50÷60即可求出轿车追上大巴车时行驶了全程的几分之几,也就是,剩下全程的(1-),也就是;如果轿车追上大巴后,速度增加,轿车现在的速度是原来的(1+),据此可知大巴与轿车现在的速度之比为5∶[6×(1+)],也就是5∶7,根据时间相同,速度比=路程比,可知大巴车被追上之后到与轿车相遇所行驶的路程∶轿车开始增速到与大巴车相遇所行驶的路程=5∶7,此时从增速到相遇时,两车的路程和占全程的2个,据此按比分配,用×2÷(5+7)即可求出每份是多少,进而乘5即可求出大巴车被追上之后到与轿车相遇所行驶的路程占全程的几分之几;再加上即可求出当轿车再次与大巴相遇时,大巴已经行驶了全程的几分之几。
【详解】(1)同样行驶完AB的路程,大巴车所花时间比轿车多花(18-8+2)分钟,根据路程相同,速度比等于时间的反比,所以大巴与轿车的速度之比为5∶6,大巴与轿车的时间之比是6∶5,
(18-8+2)÷(6-5)
=12÷1
=12(分钟)
大巴行驶完全程需要:12×6=72(分钟)
轿车行驶完全程需要:12×5=60(分钟)
轿车追上大巴车时,两车的时间差是(18-8)分钟,
(18-8)÷(6-5)×5
=10÷1×5
=50(分钟)
答:轿车出发50分钟后追上大巴。
(2)轿车追上大巴时,行驶了全程的50÷60=
剩下1-=
大巴与轿车现在的速度之比为5∶[6×(1+)],
5∶[6×(1+)]
=5∶[6×]
=5∶7
时间相同,速度比=路程比,
大巴车被追上之后到与轿车相遇所行驶的路程占全程的:
×2÷(5+7)×5
=×2÷12×5
=÷12×5
=××5

当轿车再次与大巴相遇时,大巴已经行驶了全程的:
+=
答:当轿车再次与大巴相遇时,大巴已经行驶了全程的。
【点睛】本题主要考查了较复杂的行程问题,明确路程相同,速度比等于时间的反比以及时间相同,速度比等于路程比是解答本题的关键。
19.280千米
【分析】①甲走了全程的,那么乙走了全程的1-=;②乙行完全程需7小时,所以乙一小时行驶全程的.综合①②可知相遇时甲、乙两辆汽车行驶了÷=4小时.甲每小时行30千米,4小时行驶了30×4=120千米,是全程的,所以甲、乙两地间的距离是120÷=280千米
【详解】相遇是所用的时间:(1-)÷(1÷7)=4(小时)
相遇时甲所走的路程:30×4=120(千米)
A、B两地之间的路程:120÷=280(千米)
答:A、B两地之间的路程是280千米.
20.40千米
【分析】客车速度:货车速度=2:3,客车路程:货车路程=2:3,客车行驶的路程为2份,货车行驶的路程为3份,也就是说客车比货车少行了1份,少行了8千米;所以两城相距8÷=40千米.
【详解】8÷=40 (千米)
答:甲、乙两城相距40千米.
21.4支
【分析】由于每个队的女队员人数是该队男队员人数的,所以原来全体女队员人数是全体男队员人数的,即原来女队员人数是全体队员人数的 ,当第一队调走一半队员,且全是男队员后,女突击队人数是剩下的全体男突击队员人数的,即总数的 ,这一过程中女队员人数没有发生变化,所以调走后的队员总数与调走前的队员总数之比是 ∶ =7∶8,即调走的队员人数占总数的,而调走的队员人数占第一突击队的,且原来每支突击队的总人数相同,所以共有=4支突击队。
【详解】原来女队员人数是全体队员人数的
= ;
当第一队调走一半队员,女突击队人数是剩下总数的
= ;
调走后的队员总数与调走前的队员总数之比是
∶ =7∶8,
则共有:
÷

=4(支)
答:共有4支突击队。
【点睛】首先根据这一过程中女队员人数没有发生变化,根据前后女队员人数占总人数的分率求出前后总人数的比是完成本题的关键。
22.甲仓库250吨,乙仓库350吨
【分析】根据题目中的“甲仓库的存粮比乙仓库少”,可以把甲、乙存粮用份数表示,乙仓库的存粮是7份,那么甲仓库的存粮就是(7-2)份,由此我们就可以根据按比例分配的知识,把600吨按5:7分配,就可以求出来甲、乙两仓库原来存粮的吨数.
【详解】解:甲:乙=(7-2):7=5:7
每份数:600÷(5+7)=50(吨)
甲仓库存粮的吨数:50×5=250(吨)
乙仓库存粮的吨数:50×7=350(吨)
答:甲仓库存粮250吨,乙仓库存粮350吨.
23.1.1千克
【详解】(2.7-0.3)×=0.8(千克)
0.8+0.3=1.1(千克)
24.429元
【详解】略
25.108级
【详解】解法一:小明单位时间内下的台阶数是他上的台阶数的2倍,而小明下楼梯跨了120级,上楼梯跨了90级,所以小明下楼和上楼所花的时间比为:
自动楼梯在相同的时间内运行相同的级数,假设在小明下楼梯过程中,自动楼梯运行了2x级,自动楼梯可见部分为:120-2x,而在小明上楼的过程中,自动楼梯运行了3x级,所以自动楼梯可见部分为:90+3x,由此可列得方程:120-2x=90+3x
解得x=6,
自动楼梯的可见台阶数为.120-6×2=108.
解法二:使用图示可将问题中的数量关系表示出来:将小明上楼期间自动扶梯上行台阶数看作2份,那么小明下楼期间,自动扶梯上行3份,那么5份的台阶数相当于120-90=30份.所以每份的台阶数为6,自动楼梯从底到顶的台阶数为90+6×3=108.
【点睛】
26.90米
【分析】从猎犬开始追兔子到追上兔子,猎犬和兔子所用的时间相等,即时间一定,因此,它们跑的速度与距离成正比例的关系.要求出猎犬跑的距离,关键是求出猎犬与兔子的速度之比.
因为兔子3步距离等于猎犬2步距离,不妨设兔子一步为2距离单位,则猎犬一步为3距离单位;又因为兔子4步的时间等于猎犬3步的时间,所以可设兔子每跑一步需3时间单位,猎犬每跑一步需4时间单位,根据有
所以兔子与猎犬的速度之比为
【详解】解:兔子与猎犬的速度之比为
可设猎犬至少要跑过x米才能追到兔子,则此时兔子跑过(x-10)米,根据时间一定,速度和距离成正比,可列出比例式
8∶9=(x-10)∶x
8x=9(x-10)
x=90
答:猎犬至少要跑过90米才能追上兔子.
27.吨
【分析】 由于乙管每分钟注水量是甲管每分钟注水量的2倍。那么甲管注入18吨水的时间是乙管注入36吨水的时间,甲管注入18吨水的时间与乙管注入27吨水的时间比是4∶3,也就是这两种情况下丙管注水的时间比为4∶3,可以求出当甲管注入18吨水时丙管注水多少吨,甲管的注水量加上丙的注水量,得到总的注水量。
【详解】甲管注入18吨水的时间是乙管注入:
(吨)
甲管注入18吨水的时间与乙管注入27吨水的时间比是:
那么在这两种情况下丙管注水的时间比为,而且前一种情况比后一种情况多注入吨水;
则甲管注入18吨水时,丙管注入水:
(吨)
(吨)
答:该水箱最多可容纳54吨水。
【点睛】本题将工程问题与比例问题相结合,当时间一定时,工作总量与工作效率成正比例关系。
28.252棵
【详解】时间与工效成反比,甲比乙所需时间多,即甲的时间是乙的倍.
设甲、乙的工作效率为x与y
因为同时合作,所以甲、乙植树的总量比也是3:4,即可以将整个数量分成7份,那么甲植了其中3份的树,而乙植了4份的树.
乙比甲多1份,而又知乙比甲多植36棵
所以总共的棵数(棵)
29.42分钟
【详解】解法一:由题目可知小张、小李、小王都是以匀速前进,且无论相遇点之前和相遇点之后总行程都相等,所以我们应当使用“路程相同,速度比等于时间的反比”这条比例关系来解答本题.
首先,小张和小李的相遇前后的两个追及,相遇前的追及路程为小张行走一小时的路程,相遇后的追及路程为小张行走24分钟的路程,所以追及路程比为60:24=5:2,两人速度都不变,所以速度差也不变,所以追及时间比为5:2,所以小李前后行走的时间比也是5:2,即前后两段路程比为5:2.
其次,小王和小张的前后两个追及问题:由于前后路程比为5:2,所以小王的行走时间比为5:2,也即是追及时间比为5:2,速度都不变,所以追及路程比为5:2, 而前段追及路程是小张行走60+45=105分钟的路程,所以后段追及路程是小张行走105÷5×2=42(分钟)所行走的路程,即小王比小张早42分钟到达.
解法二:运用折线示意图,结合基本几何知识,整个行程过程和其中的数量关系即可一目了然,即:
,解得,t=42.
30.4:5
【详解】设10年前甲的年龄为岁,则当时乙的年龄为岁,那根据现在两人的年龄比可得方程:,等式两边前后项交叉相乘可得,解得,所以10年前甲的年龄为20岁,乙的年龄为30岁,10年后两人分别是40岁、50岁,10年后两人的年龄比为4:5.
31.300千米
【分析】货车的速度是客车的,根据“时间相同,速度比=距离比”可知相遇时货车和客车行驶的路程比是2:3,货车行驶的路程为2份,客车行驶的路程为3份,货车比客车少行驶了1份路程,一份是2×30=60千米,A、B两地的距离就是60×5=300千米.
【详解】2×30×(2+3)=300(千米)
答:A、B两地相距300千米.
32.400
【详解】师傅与徒弟的工作效率之比是,工作时间相同,工作量与工作效率成正比,所以师傅与徒弟分别完成总量的和,师傅和徒弟一共加工了个零件
33.96
【详解】根据题意可知,圆柱形钢材的体积等于桶里下降部分水的体积,因为钢材底面半径是水桶底面半径的,即,钢材底面积就是水桶底面积的.根据体积一定,圆柱体的底面积与高成反比例可知,钢材的长是水面下降高度的16倍.
6÷()=96(厘米),(法2):3.14×20×6÷(3.14×5)=96(厘米).
34.29.7千米
【分析】因为两车行驶的时间一定,所以速度与路程成正比例,根据甲、乙路程比,可推知速度比及所用时间比,根据甲行了全程的,可以求出甲行了全程1-=、甲与乙的速度比为5:6.再根据“距离相同,速度比=时间的反比”.最后可求甲行完全程所用的时间5.5×=6.6小时,再根据“速度×时间=距离”可得A、B两地相距6.6×4.5=29.7千米.
【详解】甲路程:乙路程=:(1-)=5:6
甲速度:乙速度=5:6
甲、乙两人走完全程所用的时间比:6:5
走完全程甲所用的时间为5.5×=6.6
A、B两地相距:6.6×4.5=29.7(千米)
答:A、B两地相距29.7千米.
35.一班有48名,二班有42名
【详解】8+7=15 4+5=9 8÷(-)=90(人) 90×=48(名) 90×=42(名)
36.119人
【详解】(法1)录取的学生中男生有人,女生有(人),先将未录取的人数之比变成,又有(人),所以每份人数是(人),那么未录取的男生有(人),未录取的女生有(人).所以报考总人数是(人)。
(法2)设未被录取的男生人数为人,那么未被录取的女生人数为人,由于录取的学生中男生有人,女生有(人),则,解得.所以未被录取的男生有12人,女生有16人.报考总人数是(人)。
37.8升
【分析】本题的关键在乙容器.第二次将乙容器中的一部分混合液倒入甲容器中,并不改变乙容器中酒精纯度.这是问题解决的突破口.由题意,“乙容器中纯酒精的含量即为25%”.
由此可知:第一次将甲容器中一部分纯酒精倒入乙容器,乙容器中酒精与水的比为25%∶(1-25%)=1∶3
原来乙容器有水9升,可以知道第一次甲容器倒入乙容器的酒精为9×1÷3=3(升),因此甲容器中酒精与水的比为62.5%∶(1-62.5%)=5∶3.
把这时甲容器的液体看成两部分:一部分是原来的8升纯酒精;另一部分是从乙容器倒过来的混合液.由乙容器中酒精与水的比为1∶3,便可以求出混合液的体积.
【详解】解法一:由已知,第一次和第二次乙容器中酒精含量都为25%,故乙容器酒精与水的比为25%∶(1-25%)=1∶3,从而第一次从甲容器倒入乙容器的酒精为9×1÷3=3(升).
甲容器剩下的酒精为11-3=8(升).
第二次倒后,甲容器中酒精与水的比为62.5%∶(1-62.5%)=5∶3.
设倒过来的这部分混合液中的酒精为1份,水看成3份,与混合后甲容器中纯酒精与水的比例5∶3比较知:8升酒精是5-1=4(份),混合液是1+3=4(份)或(3+5)-4=4(份).
再由8升纯酒精是4份,反过来4份混合液是8升.
解法二:与解法一相同,可知乙容器中纯酒精与水的比是1∶3;甲容器中的纯酒精与溶液重量的比是5∶8.设第二次从乙容器中倒入甲容器中的混合液是x升,依题意,列出方程
答:第二次从乙容器倒入甲容器的混合液是8升.
【点睛】找到乙容器酒精含量在第一次和第二次倒的过程中不变这一突破口;对于几分之几,要把它化成几份对几份.这种技巧类似于分数应用题和工程应用题中的假设单位1.
38.49:36
【详解】小明在下降的电梯中称得的体重为其实际体重的,小刚在上升的电梯中称得的体重为其实际体重的,而小明在下降的电梯中与小刚在上升的电梯中称得的体重相同,所以小明和小刚实际体重的比是:.
39.2240米或6720米
【详解】甲晚出发7分钟,也就是乙先走了60×7=420米,两人共同行走的时间也减少了.对应的路程和也发生了变化.
前后两次二人的相遇路程和相差420千米,那么前后两次相遇时间相差为420÷(80+60)=3(分钟),
而本来这三分钟甲能多走80×3=240(米),
这就说明C点与D点之间的距离为240米,由条件“A、B中点E到C点的距离是到D点距离的2倍”可以得到中点到C、D两点之间的距离.不过这里要分两种情况:
(一)中点E在C、D之间,那么ED、EC的距离和为240米,EC的距离为:240÷(2+1)×2=160米
也就是说甲乙同时出发后的相遇点距离中点160米,即甲比乙多走了320米.两人相遇所花的时间为:320÷(80-60)=16(分).A、B之间的距离为:(80+60)×16=2240(米).
(二)C、D在E点的同一侧,那么ED、EC的距离差为240米,EC的距离为:240÷(2-1)×2=480(米),也就是说甲乙同时出发后的相遇点距离中点480米,即甲比乙多走了960米,两人相遇所花的时间为`:960÷(80-60)=48(分).A、B之间的距离为:(80+60)×48=6720(米).
综上所述,A、B两地之间距离为2240米或6720米.
【点睛】如果只涉及到距离关系,没有提到位置关系,而且这些点在同一条直线上,那么就不只有一种位置关系.
40.280千米
【分析】题目给出的距离信息只有200千米这一条,所以我们应当求出200千米对应的路程比。如果A车没有停半小时,那么它将比C车晚到1.5小时,因A车后来的速度是C车的,所以A车和C车相同路程行程的时间比为5∶4,即C车每行驶4小时就比A车快1小时,所以C车快了1.5小时,说明C车后来行了1.5×4=6(小时).那么从甲市到乙市C车行了6+1=7(小时)。同样如果B车没有停半小时,它将比C车晚到0.5小时,而此时B车和C车在相同路段行程的时间比也是5∶4,说明C车后来行了0.5÷(5-4)×4=2(小时),这段路是甲、乙两市距离的。所以B车出事故时,已经行驶了整个路程的。用200除以即可得解。
【详解】1.5×4+1
=6+1
=7(小时)
0.5÷(5-4)×4
=0.5÷1×4
=2(小时)
1-2÷7
=1-

=200×
=280(千米)
答:甲、乙两市之间的距离为280千米。
【点睛】此题已知条件为速度比例和时间差,也符合“比例+两者之一或两者和与差”的出题模式,所以利用“比例转化+按比例分配(已知两者之一或两者和与差分别求两者)”的解题模式,注意此题中的时间差计算时要扣除停留的时间,注意加减关系。
41.180名;225名;210名
【详解】将六年级学生的,等于五年级学生的,等于四年级学生的,看作一个单位,那么六年级学生人数等于2个单位,五年级学生等于2.5个单位,四年级学生等于学生,所以六年级、五年级、四年级学生人数的比为,所以六年级学生人数为=180人,五年级学生人数为人,四年级学生人数为人
42.12.5米
【分析】当甲到终点时,乙离终点还有40米,丙离终点还有50米,所用的时间相同.据此可知乙、丙的路程比、速度比.
【详解】甲跑完了200米时:
乙跑了:200-40=160(米);
丙跑了:200-50=150(米);
乙与丙的速度比:160:150=16:15
当乙跑200米时,丙跑了:200÷=200×=187.5(米)
丙离终点还有:200-187.5=12.5(米);
答:当乙到达终点时,丙还有12.5米.
43.36cm
【详解】由条件长方体的长、宽、高的比,则长方体的所有视面,上面、前面、左面的面积比为,这三个面的面积和等于长方体表面积的二分之一,所以,长方体的上面的面积为,前面的面积为,左面的面积为,而,所以即是长、宽、高的乘积,所以这个长方体的体积为.
44.甲、乙、丙的路程比为6千米∶12千米∶18千米=1∶2∶3 总份数是1+2+3=6(份) 甲应付的车费:36×=6(元) 乙应付的车费:36×=12(元) 丙应付的车费:36×=18(元)
【详解】先根据题意,把全程看作单位“1”,先求出甲、乙、丙三人的路程比为6千米∶12千米∶18千米=( )∶( )∶( ),因为按路程远近付款,路程比即付款比,然后运用按比例分配知识进行解答即可.
45.12千克
【详解】解法一:设丙缸酒精溶液的重量为千克,则乙缸为千克.根据纯酒精的量可列方程:

解得,所以丙缸中纯酒精的量是(千克).
解法二:由于甲缸酒精溶液为50千克,乙、丙两缸酒精溶液合起来也是50千克,所以如果将乙、丙两缸酒精溶液混合,得到的酒精溶液的浓度为.
那么乙、丙两缸酒精溶液的量之比为:,而它们合起来共50千克,所以丙缸酒精溶液有千克,丙缸中纯酒精的量是(千克).
46.72千米
【详解】三种方式相遇所行的路程都相等,典型的由时间比化速度比的题目,求出了速度再求总路程就简单了.
因为每次相遇的地点都在桥上,所以在这三种情况中,甲每次走的路程都是一样的,同样乙每次走的路程也是一样的.
在第二种情况中,乙速度不变,所以乙到桥上的时间还是3小时,他提前了0.5小时,那么甲到桥上的时间是3-0.5=2.5(小时),两次相遇时间比为3:2.5,路程一样,所以甲的速度成反比为2.5:3=5:6,又速度增加2千米每小时,所以甲原速为2÷(6-5)×5=10(千米/小时).
在第三种情况中,甲速度不变,所以甲到桥上的时间还是3小时,他延迟了0.5小时,那么乙到桥上的时间是3+0.5=3.5(小时),与第一种情况相比较,两种相遇时间比为3:3.5,路程一样,所以乙的速度成反比为3.5:3=7:6,又速度减少2千米每小时,所以乙原速为2÷(7-6)×7=14(千米/小时).
这样就可以求出A 、B两地的距离为(10+14)×3=72(千米).
47.师傅:125个 徒弟:75个
【分析】由已知,师傅加工一个零件用3分钟,那么他每分钟可以加工个零件;徒弟加工一个零件要用5分钟,所以他每分钟可以加工个零件.从而师徒二人的工作效率之比为.在本题中,师徒二人的工作时间一样,是题中的不变量,由,所以工作量和工作效率成正比例关系.
【详解】解法一:由于师徒两人工作效率的比是.在本题中,所以他们的工作量之比也是.因此师傅加工的零件个数是,徒弟加工的零件个数是200-125=75(个).
解法二:设师傅加工x个零件,则徒弟加工(200-x)个零件.当工作时间一定时,工作量与工作效率成正比例的关系,得
解法三:因为师傅每分钟加工个零件,徒弟每分钟加工个零件,所以每分钟师徒二人可加工个零件,因此当完成任务时,师徒二人所用的时间是.
师傅每分钟加工个零件,因此最终师傅加工的零件数是,徒弟加工的零件数是200-125=75(个).
48.原来小明40张,小强30张
【详解】解法一:4∶3=20∶15
5∶2=20∶8
假设小强也买来15×=(张),那么变化后的比仍应是20:15,但现在是20∶8.
因此这个比的每一份是:(+8)(15-8)=
小明现有:20×=55(张),原有55-15=40(张)
小强现有:8×=22(张),原有22+8=30(张)
答:原来小明有40张,小强有30张.
解法二:设原来小明有4“份”,小强有3“份”.把小明现有的图画纸张数乘2,小强现有的图画纸张数乘5,所得到的两个结果相等.我们可以画出如下示意图:
从图上可以看出,3×5-4×2=7(份)相当于图画纸15×2+8×5=70(张).
因此每份是10张,原来小明有40张,小强有30张.
49.小时
【分析】先求出甲、乙的工作效率之和,再按比例分配,得到各自的工作效率,然后求出乙完成一半需要的总时间,减去5小时,得到还需要的时间。
【详解】乙小时完成总工作量的;
乙每小时完成总工作量的;
乙需要完成的总工作量为;
乙要完成这个任务还需要的时间:
(小时)
答:乙还要5小时才能完成分配的任务。
【点睛】本题考查的是工程问题与比例问题,按比例分配的问题可以设份数求解。
答案第1页,共2页
答案第1页,共2页

展开更多......

收起↑

资源预览