【小升初典型奥数】方阵问题(含解析)-2024-2025学年六年级下册数学北师大版

资源下载
  1. 二一教育资源

【小升初典型奥数】方阵问题(含解析)-2024-2025学年六年级下册数学北师大版

资源简介

小升初典型奥数 方阵问题
1.某部队战士排成方阵行军,另一支队伍共人加入他们的方阵,正好使横竖各增加一排,现共有多少战士?
2.学校学生排成一个方阵,最外层的人数是60人,问这个方阵共有学生多少人
3.一队战士排成中空方阵,最外层的人数为44人,最内层的人数为28人,这方阵共有多少人?
4.正方形操场四周栽了一圈树,四个角上都栽了树,每两棵树相隔5米。甲、乙从一个角上同时出发,向不同的方向走去,甲的速度是乙的2倍,乙在拐了一个弯之后的第5棵树与甲相遇(把角上的树看作第一棵树),操场四周栽了多少棵树?
5.节日来临,同学们用盆花在操场上摆了一个空心花坛,最外层的一层每边摆了盆花,一共层,一共用去多少盆花?
6.同学们排成一个方阵做早操,每行9人,这个方阵一共有多少人?
7.校三年级学生排成一个方阵,最外一层的人数为人,问方阵外层每边有多少人?这个方阵共有三年级学生多少人?
8.三年级学生排成一个方阵进行体操表演,最外一层的人数为32人,问方阵外层每边有多少人?这个方阵共有三年级学生多少人?
9.运动员入场式要求排成一个9行9列的正方形方阵,如果去掉2行2列,要减少多少运动员?
10.在一次运动会开幕式上,有一大一小两个方阵合并变换成一个行列的方阵,求原来两个方阵各有多少人?
11.四年级同学参加广播操比赛,要排列成每行8人,共8行方阵.排列这个方阵共需要多少名同学?
12.学生进行队列表演,排成了一个正方形队列,如果去掉一行一列,要去掉13人,问这个方阵共有多少人?
13.为了准备学校的集体舞比赛,四年级的学生在排队形。如果排成3层空心的方阵则多10人,如果在中间空心的部分接着增加一层又少6人。问一共有多少个学生参加排练呢?
14.一队战士排成三层空心方阵多出人,如果空心部分再加一层又少人,这队战士共有多少人?如果他们改成实心方阵,每边应有多少人?
15.小红用棋子摆成一个正方形实心方阵用棋子100枚,最外边的一层共多少枚棋子?
16.学生进行队列表演,排成了一个正方形队列,如果去掉一行一列,要去掉人,问这个方阵共有多少人?
17.有杨树和柳树以隔株相间的种法,种成7行7列的方阵,问这个方阵最外一层有杨树和柳树各多少棵 方阵中共有杨树,柳树各多少棵
18.阳光小学组织三、四年级的学生去乐乐植物园参加社会实践活动。在乐乐植物园中,同学们看到了一个花坛,是由红、黄两种颜色的鸡冠花摆成的实心方阵,最外层一共摆了28盆红色的鸡冠花。这个花坛一共摆了多少盆鸡冠花?(请你先画图分析,再列式计算)
19.晓晓爱好围棋,他用棋子在棋盘上摆了一个二层空心方阵,外层每边有14个棋子,你知道他一共用了多少个棋子吗?
20.参加中学生运动会团体操比赛的运动员排成了一个正方形队列.如果要使这个正方形队列减少一行和一列,则要减少33人.问参加团体操表演的运动员有多少人?
21.学校进行课间操比赛,高年级同学恰好可以排成一个实心方阵,可学校操场较小,只好横竖各减少一排,这样就减少了23个人,问这个学校高年级有多少个学生?
22.仪仗队原计划64名少先队员手持彩旗,在彩车周围排成一个每边二层的方阵,后来决定在方阵外面再增加一层,成为三层方阵,求需要增加多少名学生?
23.在一次团体操表演中,有一个空心方阵最外层有人,最内层有人,参加团体操表演的共多少人?
24.四年级同学参加学校运动会开幕式表演,共排成4个方队,每个方队排成6行,每行6人。最外圈的同学举彩旗,其余同学举花束。举彩旗的同学一共有多少人?举花束的呢?(先画图表示一个方队的队列,再计算)
25.棋子若干粒,恰好可排成每边8粒的正方形,棋子的总数是多少?棋子最外层有多少粒?
26.名同学排成一个方阵,后来又减去一行一列,问减少了多少人?
27.大庆路小学启智楼前摆放了一个方阵花坛.这个花坛的最外层每边各摆放8盆花,最外层共摆了多少盆花?这个方阵花坛共有多少盆花?
28.小明在一个正方形的棋盘里摆棋子,他先把最外层摆满,用了个棋子,求最外层每边有多少棋子?如果他要把整个棋盘摆满,还需要多少棋子?
29.同学们做操,小林站在左起第5列,右起第3列;从前数前面有4个同学,从后数后面有6个同学。每行每列的人数同样多,做操的同学一共有多少人?
30.明明用围棋子摆成一个三层中空方阵,如果最外层每边有围棋子15个,明明摆这个方阵最里层一周共有多少枚棋子 摆这个三层空心方阵共用了多少枚棋子?
31.二年级舞蹈队为全校做健美操表演,组成一个正方形队列,后来由于表演的需要,又增加一行一列,增加的人数正好是人,那么原来准备参加健美操表演的有多少人?
32.在四年级团体操表演中,奇思排在正方形方阵的最中间,他的位置用数对表示是(13,13)。四年级表演团体操的一共有多少人?
33.有一队士兵,排成了一个实心方阵,最外层一周共有240人,这个方阵最外层每边有多少人?
34.同学们排练团体操,排成一个方阵,中间的实心方阵是女同学,外面三层是男同学,最外圈两层又是女同学.已知方阵中男同学是108人,问女同学是多少人?
35.军训的学生进行队列表演,排成了一个7行7列的正方形队列,如果去掉一行一列,要去掉多少人?还剩下多少人?
36.啦啦队排成方阵进行表演,最外围的一圈队员有64人,如果在外围再增加一圈队员,需要增加多少人?增加一圈后方阵里一共有多少人?
37.育英小学四年级的同学排成一个实心方阵队列,还剩下5人,如果横竖各增加一排,排成一个稍大的实心方阵,则缺少26人.育英小学四年级有多少人?
38.某市国庆节有60000人参加游行庆祝活动,这些人被平均分成25队,每队以32人为一排.行进中,排与排之间相隔1米,队与队之间相隔6米.求这支游行队伍的长度.
39.有若干盆鲜花摆成一个中空方阵,最外层共摆48盆,最内层共摆24盆,请问:共摆了多少盆鲜花?
40.有一群学生排成三层空心方阵,多人,如空心部分增加两层,又少人,问有学生多少人?
41.军训的学生进行队列表演,排成了一个行列的正方形队列,如果去掉一行一列,要去掉多少人?
42.学校楼前摆放了一个方阵花坛。这个花坛的最外层每边各摆放8盆花,最外层共摆了多少盆花?
43.有100个人站成一个实心方阵,那么这个方阵的最外层共有多少人?从外向里算起的第二层有多少人?从里向外算起的第三层有多少人?
44.用棋子摆成方阵,恰为每边24粒的实心方阵,若改为3层的空心方阵,它的最外层每边应放多少粒?
45.解放军进行排队表演,组成一个外层有48人,内层有16人的多层中空方阵,这个方阵有几层?一共有多少人?
46.同学们排成一个三层的空心方阵.已知最内层每边有6人,这个方阵共有多少人?
47.将一个每边枚棋子的实心方阵变成一个四层的空心方阵,此空心方阵的最外层每边有多少棋子?
48.参加“抖空竹”“舞花棒”联合表演的同学排成了一个正方形方阵,参加“抖空竹”的24名同学正好站满最外一层,参加表演的同学一共有多少人?
49.同学们用盆花排出一个两层空心方阵,后来又决定在外面再增加一层成为三层方阵,还需多少盆花?
50.同学们排成了一个方阵进行体操表演,最外层每边各有10人,最外层一共有多少人?
51.在第五届运动会上,红星小学组成了一个大型方块队,方块队最外边每边30人,共有10层,中间5层的位置由20个同学抬着这次运动会的会徽,这个方块队共由多少个同学组成?
52.某小学四年级的同学排成一个四层空心方阵还多15人,如果在方阵的空心部分再增加一层又少21人.这个小学四年级的学生一共有多少人?
21世纪教育网(www.21cnjy.com)
21世纪教育网(www.21cnjy.com)
参考答案
1.人
【分析】根据题意,后来的战士加入方阵时,是在原方阵外侧横竖方向各增加一排,那么有一个战士要站在这两排的交界处,计算横排竖排的人数时,对他进行了重复计算,也就是说现在每一排实际人数是:(人),因此可以求出总人数:(人)。
【详解】(17+1)÷2
=18÷2
=9(人)
9×9=81(人)
答:现共有战士81人。
【点睛】解答此题的关键是,要注意行与列交汇处的重复现象。
2.256人
【分析】方阵问题的核心是求最外层每边人数.根据四周人数和每边人数的关系可知:
每边人数=四周人数÷4+1,可以求出方阵最外层每边人数,那么整个方阵队列的总人数就可以求了.
【详解】方阵最外层每边人数:60÷4+1=16(人)
整个方阵共有学生人数:16×16=256(人)
3.144人
【详解】44÷4+1=12(人)
12×12=144(人)
28÷4+1=8(人)
(8-2)×(8-2)=36(人)
144-36=108(人)
4.棵
【分析】因为甲的速度是乙的两倍,乙走了操场的一条边,甲走了两条边,乙拐了一个弯之后走到第5棵树,实际走了4个间隔,那么甲应该走了8个间隔,相遇的树就是甲拐弯以后走的第9棵树,所以这一边有树:9+413(棵)。操场周围的树一共有:(13-1)×448(棵)。
【详解】[(5-1)×2+1+(5-1)-1]×4
=[4×2+1+4-1]×4
=12×4
=48(棵)
答:操场四周栽了48棵树。
【点睛】本题主要考查了植树问题、方阵问题的数量关系,根据“棵数=间隔数+1 ”、“四周人数=(每边人数-1)×4”解题即可。
5.盆
【分析】不论是空心方阵还是实心方阵,每向里一层,每边的花盆就少个,每层的花盆就少个,因此可以依次求出每层花盆的个数。最外层有花盆:(盆),第二层有:(盆),第三层有:(盆),共有:(盆)。
【详解】(12-1)×4
=11×4
=44(盆)
44+44-2×4+44-2×4×2
=44+36+28
=108(盆)
答:一共用去108盆花。
【点睛】正确理解:不论是空心方阵还是实心方阵,每向里一层,每边的花盆就少个;这是解答此题的关键。
6.81人
【分析】这是一道实心方阵问题,求这个方阵里有多少人,就是求实心方阵中布点的总数.
【详解】9×9=81(人)
答:这个方阵一共有81人.
7.10人;人
【分析】根据“每边人数=四周人数÷4+1”,求出最外层每边人数;再根据“实心方阵的总人数=每边人数×每边人数”,求出这个方阵共有三年级学生的人数。
【详解】36÷4+1
=9+1
=10(人)
10×10=100(人)
答:方阵外层每边有10人,这个方阵共有三年级学生100人。
【点睛】此题考查了方阵问题中的数量关系,“每边人数=四周人数÷4+1、实心方阵的总人数=每边人数×每边人数”。
8.9人;81人
【分析】根据“四周人数=(每边人数-1)×4”可得:每边人数为:(四周人数+4)÷4=每边人数,求出每边的人数,再根据“总人数=每边人数×每边人数”,即可求出这个方阵的总人数。
【详解】(32+4)÷4
=36÷4
=9(人)
9×9=81(人)
答:这个方阵共有三年级学生81人。
【点睛】熟练掌握方阵问题的解题方法,是解答此题的关键。
9.32人
【详解】9×9=81(人)
(9-2)×(9-2)=49(人)
81-49=32(人)
答:要减少32名运动员.
10.64人;36人
【分析】10行10列的方阵由100人组成,原来的小方阵每行或每列人数都不会超过10人,大方阵人数应该在50~100之间,可取64或81,运用枚举法,可求出满足条件的是:大方阵有64人,小方阵有36人。
【详解】10×10=100(人)
8×8+6×6
=64+36
=100(人)
答:大方阵有64人,小方阵有36人。
【点睛】根据数据多少和学生具体情况可考虑教给学生平方数的概念,熟记一些简单的平方数是解答此题的关键。
11.64名
【分析】这是一道实心方阵问题,求这个方阵里有多少名同学,就是求实心方阵中布点的总数.排列成每行8人点,共8行,就是有8个8点.求方阵里有多少名同学,就是求8个8人是多少人?
【详解】8×8=64(人)
答:排列这个方阵,共需要64名同学.
12.49人
【分析】去掉一行一列时,我们需要思考去掉了几个人,因为是正方形队列,所以每行每列的人数一样多,站在行和列的交点的同学既属于这一行也属于这一列,所以现在求每行(或每列)的人数时需要用13加上1得出两行(或两列)共有14人,再求出1行(或1列)的人数,最后求出总人数即可。
【详解】(13+1)÷2
=14÷2
=7(人)
7×7=49(人)
答:这个方阵共有49人。
【点睛】解答此题的关键是,要注意行与列交汇处的重复现象。
13.人
【分析】在内部增加一层,人数由多出10人变为反而少6人,所以这一层人数为(10+6)人,据此即可求出每层每边人数,再求出这个四层方阵的总人数,减去6,就是学生人数。
【详解】中间空心部分加一层,每边有:
(10+6)÷4+1
=16÷4+1
=4+1
=5(人)
四层方阵有:
(4+6+8+10)×4
=28×4
=112(人);
一共有学生:
112-6=106(人)
答:一共有106个学生参加排练。
【点睛】解答此题的关键是,找出新增加的这一层是多少人。
14.人;人
【分析】把多余的人放在方阵内部还少人,可见方阵内部增加一层,需要:(人),因此向外三层的每层人数都可以求出。从内向外每层人数依次是:第一层:(人),第二层:(人),第三层:(人),总人数:(人),因为,所以排成实心方阵每边有人。
【详解】(16+28+8)+(16+28+2×8)+(16+28+3×8)+16
=52+(16+28+16)+(16+28+24)+16
=52+60+68+16
=196(人)
196=14×14
答:这队战士共有196人,如果他们改成实心方阵,每边应有14人。
【点睛】认真观察方阵图形可知,在方阵中,方阵每向里面一层,每边的个数就减少2个,即每向里一层,每层的个数就减少8个,据此求出总人数即可解题。
15.36枚
【详解】解:这要用到方阵的公式逆运算,100必然是一个数的平方数.
因为10×10=100(枚),并且是实心的方阵,所以正方形最外层每边有10枚.
(10-1)×4=9×4=36(枚)
答:最外边的一层共有36枚棋子.
16.人
【分析】正方形队列,每行每列人数一样多,但在数的时候,站在角落的同学被数了两次,那么现在求每行的人数时就要在里面多加一个。现在每行的人数是:(人),共有:(人)。
【详解】(11+1)÷2
=12÷2
=6(人)
6×6=36(人)
答:这个方阵共有36人。
【点睛】解答此题的关键是,要注意行与列交汇处的重复现象。
17.方阵最外层杨树12棵,柳树12棵;
方阵中共有杨树25棵,柳树24棵或者杨树24棵,柳树25棵.
【分析】根据已知条件柳树和杨树的种法有如下两种,假设黑点表示杨树,白点表示柳树.观察图(1)(2),不管是柳树种在方阵最外层的角上还是杨树种在方阵最外层的角上,方阵中除最里边一层外其它层杨树和柳树都是相同的.因而杨树和柳树的棵数相等.即最外层杨、柳树分别为(7-1)×4÷2=12(棵).
当柳树种在方阵最外层的角上时,最内层的一棵是柳树;当杨树种在方阵最外层的角上时,最内层的一棵是杨树,即在方阵中,杨树和柳树总数相差1棵.
【详解】(1)最外层杨柳树的棵数分别为:(7-1)×4÷2=12(棵)
(2)当杨树种在最外层角上时,杨树比柳树多1棵:
杨树:(7×7+1)÷2=25(棵)
柳树:7×7-25=24(棵)
(3)当柳树种在最外层角上时,柳树比杨树多1树
柳树(7×7+1)÷2=25(棵)
杨树7×7-25=24(棵)
答:方阵最外层都有杨树12棵,柳树12棵,方阵中总共有杨树25棵,柳树24棵,或者有杨树24棵,柳树25棵.
18.64盆
【分析】实心方阵中,最外层鸡冠花数量=4×(每边鸡冠花数量-1),则每边鸡冠花有28÷4+1=8(盆)。则这个花坛一共摆了(8×8)盆鸡冠花。
【详解】
28÷4+1
=7+1
=8(盆)
8×8=64(盆)
答:这个花坛一共摆了64盆鸡冠花。
19.个
【分析】如图所示,方阵每向里面一层,每边的个数就减少2个。知道最外面一层每边放14个棋子,就可以求出第二层每边的个数。知道各层每边的个数,就可以求出总数。
【详解】
(14-1)×4+(14-2-1)×4
=13×4+11×4
=52+44
=96(个)
答:一共用了96个棋子。
【点睛】认真观察方阵图形可知,在方阵中,方阵每向里面一层,每边的个数就减少2个,即每向里一层,每层的个数就减少8个,据此解题即可。
20.289人
【分析】方阵问题的核心是求最外层每边人数.
【详解】去掉一行、一列的人数是33,则去掉的一行(或一列)人数=(33+1)÷2=17人,方阵的总人数为最外层每边人数的平方,所以总人数为17×17=289(人).
21.144人
【详解】解:(23+1)÷2=12(人)
12×12=144(人)
或 (23-1)÷2+1=12(人)
12×12=144(人)……高年级人数
22.44人
【详解】(64+8)÷2=36(人) 36+8=44(人) 增加人数
或 64÷4÷2+2=10(人) (10+2)×4-4=44(人)
23.人
【分析】根据最外层和最内层人数,可以分别求出内外层每边的人数,一个空心方阵,可以看做从一个最外层有人的实心方阵中,减去了一个小方阵。外层每边人数:(人)。内层每边人数:(人),空心方阵人数:(人)。
【详解】(64÷4+1)×(64÷4-1)-(32÷4+1-2)×(32÷4+1-2)
=(16+1)×(16+1)-(8+1-2)×(8+1-2)
=17×17-7×7
=289-49
=240(人)
答:参加团体操表演的共240人。
【点睛】此题考查了方阵问题中的数量关系,空心方阵的总人数=(外边人数)2-(内边人数)2。
24.见详解
【分析】最外圈上下两行各6人,共12人;左右两列各剩4人,共8人。
1个方队举彩旗的同学=12个人+8个人=20个人,4个方队举彩旗的同学=20×4;
1个方队举花束的同学=里圈正方形的边长×边长=16人,4个方队举花束的同学=16×4。
【详解】如图:
举彩旗:(6×2+4×2)×4
=(12+8)×4
=20×4
=80(人)
举花束:4×4×4=64(人)
答:举彩旗的同学一共有80人,举花束的有64人。
25.棋子共有64粒,最外层有28粒
【分析】棋子排成每边8粒的正方形,即每排八粒,共八排,可见棋子总数是8个8粒,即8×8=64粒,最外层的棋子数可按公式:一周总点数=每边粒数×4-4求得.
【详解】8×8=64(粒)
8×4-4
=32-4
=28(粒)
答:棋子共有64粒,最外层有28粒.
26.人
【分析】名同学排成一个方阵,后来又减去一行一列,剩下的是行列的方阵,即剩下人,减少了 人。
【详解】方法一:100-9×9
=100-81
=19(人)
方法二:
10×2-1
=20-1
=19(个)
答:减少了9人。
【点睛】此题考查了方阵问题中的数量关系:“实心方阵的总人数=每边人数×每边人数”。
27.解:8×4﹣4
=32﹣4
=28(盆)
8×8=64(盆)
答:最外层一共摆了28盆,这个方阵花坛共有64盆花
【详解】【分析】这个方阵花坛的最外层每边有花盆8盆,可以看做每边点数为8的方阵问题,根据最外层四周的总点数=每边点数×4﹣4,实心方阵的总点数=每边点数×每边点数,即可解决问题.
28.11个;个
【分析】首先根据“每边的个数=总数÷”求出每边的棋子数:(个),根据“每向里一层每边棋子数减少",求出从最外面数第二层中每边各有:(个)棋子,利用求实心方阵总个数的方法就可以求出还需棋子:(个)。
【详解】40÷4+1
=10+1
=11(个)
(11-2)×(11-2)
=9×9
=81(个)
答:最外层每边有11棋子,如果他要把整个棋盘摆满,还需要81棋子。
【点睛】此题考查了方阵问题中的数量关系,“每边人数=四周人数÷4+1、实心方阵的总人数=每边人数×每边人数”。
29.77人
【分析】根据题意先分别算出每行和每列的人数,即是做操队列的列数和行数,再相乘,就是做操的同学共有的人数。
【详解】4+6+1=11(人)
5+3-1=7(人)
11×7=77(人)
答:做操的同学一共有77人。
【点睛】找出这个队列的行数与列数是解答此题的关键。
30.这个方阵最里层一周有40个棋子;摆这个中空方阵共用144个棋子
【分析】(1)方阵每向里面一层,每边的个数就减少2个,知道最外面一层,每边放15个,可以求出最里层每边的个数,就可以求出最里层一周放棋子的总数.
(2)根据最外层每边放棋子的个数减去这个中空方阵的层数,再乘层数,再乘4,计算出这个中空方阵共用棋子多少个.
【详解】(1)最里层一周棋子的个数是:(15-2-2-1)×4=40(个)
(2)这个空心方阵共用的棋子数是:(15-3)×3×4=144(个)
答:这个方阵最里层一周有40个棋子;摆这个中空方阵共用144个棋子.
31.人
【分析】因增加的是一行一列,而行、列人数仍应相等,但为什么增加的却是人,因有人是既在他所在的行,又在他所在的列。若把它减掉,剩下人数恰是原两行或两列的人数,据此即可求出原来一行或一列的人数和参加健美操表演的人数。
【详解】(17-1)÷2
=16÷2
=8(人)
8×8=64(人)
答:原来准备参加健美操表演的有64人。
【点睛】解答此题的关键是,要注意行与列交汇处的重复现象。
32.625人
【分析】根据题意,奇思排在正方形方阵的最中间,数对表示是(13,13),则他的前后左右各有12人,所以该方阵每排的人数是(12+12+1)人,一共有(12+12+1)排,用每排的人数乘排数即可求出四年级表演团体操的一共有多少人。
【详解】(12+12+1)×(12+12+1)
=(24+1)×(24+1)
=25×25
=625(人)
答:四年级表演团体操的一共有625人。
33.61人
【分析】根据题意可知,最外层总人数÷4+1=最外层每边人数,代入数据解答即可。
【详解】240÷4=60(人)
60+1=61(人)
答:这个方阵最外层每边有61人。
34.148人
【分析】我们可以把这个团体分解成三个方阵:3层的男生空心方阵,里面的女生实心方阵,外面的2层女生空心方阵.女同学的人数就是两个女生方阵的人数之和.
【详解】先由男生总人数,求出3层的男生空心方阵外层一边的人数:108÷4÷3+3=12(人)
因为每向里一层,每条边上的人数就少2,所以:
(1)里面女生实心方阵每行人数为:12-3×2=6(人),总人数为:6×6=36(人);
(2)外面2层女生空心方阵最外层每边人数为:12+2×2=16(人),总人数为:(16-2)×2×4=112(人);
女同学总人数为:112+36=148(人).
35.要去掉13人;还剩下36人
【分析】如下图:
【详解】方法一:去掉的一行一列的人数为:7×2-1=13(人)
剩下的人数为:7×7-13=36(人)
方法二:去掉后剩下的是6行6列的正方形队列,即6×6=36(人)
去掉的人数为:7×7-6×6=13(人)
36.72人;361人
【分析】根据四周人数=(每边人数-1)×4,即每边人数=四周人数÷4+1,代入数值求出原来每边的人数,在外围再增加一圈队员,也就是外圈比里面的一圈每边增加2人,即用算出的每边人数加上2,为再增加一圈后的外围单边人数,根据四周人数=(每边人数-1)×4可求出这时最外圈的人数,即为新增加的人数;该方阵为实心方阵,所以总人数=每边人数×每边人数,代入数据即可。
【详解】由分析可得:
64÷4+1
=16+1
=17(人)
17+2=19(人)
(19-1)×4
=18×4
=72(人)
19×19=361(人)
答:需要增加72人,增加一圈后方阵里一共有361人。
【点睛】本题属于封闭型植树问题,熟练掌握方阵一圈人数和每边人数的关系。
37.230人
【分析】排成一个实心方阵队列,还剩下5人,说明是多出5人,如果横竖各增加一排后,缺少26人,说明横竖各增加一排所需要的人数是5人与26人的和,那么(5+26)人相当原来方阵中两排的人数多1人,从(5+26)人中减去角上的1人,再除以2,就可求出原来方阵中一排的人数.因此,可求出原来方阵中的人数,然后加上剩下的5人,就可求出四年级的总人数是多少人.
【详解】(1)原来方阵中每排有:(5+26-1)÷2=15(人)
(2)四年级共有:15×15+5=230(人)
答:育英小学四年级有230人.
38.1994米
【详解】每队有60000÷25=2400人,所以每队有2400÷32=75排,于是每队排排之间有74个间隔,即每队长74×1=74米.
但是每队之间又间隔6米,25队有24个间隔,即24×6=144米,那么这只游行队伍的长度为74×25+144=1994米.
39.144盆
【详解】由于方阵中相邻两个正方形每边相差8,因此第二层应摆鲜花48-8=40盆,第三层有花40-8=32盆,第四层有花32-8=24盆.这样通过枚举方法求出一共有四层花,及中间两层花的总数.因此一共摆了48+40+32+24=144盆.
答:一共摆了144盆.
40.人
【分析】增加的两层人数为:(人),这两层人数之差是人,因此最里层有:(人),现在的方阵共层,那么最外层有:(人),知道最外层人数及层数就不难求出总人数是人。
【详解】(9+15-8)÷2
=16÷2
=8(人)
8+8×4
=8+32
=40(人)
40÷4+1=11(人)
(11-5)×5×4-15
=6×5×4-15
=120-15
=105(人)
答:有学生105人。
【点睛】找出最外层的人数是解答此题的关键。
41.人
【分析】一行一列各人,顶点处重复;因为角上的一个同学被重复数了两次,所以要把多算的一次减掉。据此解题即可。
【详解】5×2-1
=10-1
=9(人)
答:要去掉9人。
【点睛】解答此题的关键是,要注意顶点处的重复现象。
42.28盆
【分析】一个方阵花坛也就是正方形花坛,正方形有4条边,8乘4,再减去四个角上重复计算的4盆,即等于最外层花的盆数。
【详解】8×4-4
=32-4
=28(盆)
答:最外层共摆了28盆花。
【点睛】计算时注意角上的花不要重复计算,这是解答本题的关键。
43.方阵的最外层共36人,从外向里算起的第二层有28人,从里向外算起的第三层有20人
【分析】(1)由题意,100个人站成一个实心方阵,10×10=100,所以最外层每边有10人,要求最外层一共有多少人,根据“四周的人数=(每边的人数﹣1)×4”解答;
(2)由于方阵相邻两层每边相差2人,相邻两层人数相差8人,所以用最外层的人数减去8即得从外向里算起的第二层有多少人;
(3)这个实心方阵的最里层有4人,用4+8+8即得从里向外算起的第三层有多少人.
【详解】(1)最外层:(10﹣1)×4=36(人),
(2)从外向里算起的第二层:36﹣8=28(人),
(3)从里向外算起的第三层:4+8+8=20(人)
答:这个方阵的最外层共36人,从外向里算起的第二层有28人,从里向外算起的第三层有20人.
44.51粒
【详解】24×24=576(粒)
576÷4÷3+3
=48+3
=51(粒)
答:最外层每边棋子数为51粒.
45.5层,160人
【详解】(48-16)÷8+1=5(层)
(48+16)×5÷2=160(人)
答:这个方阵有5层,一共有160人.
46.84人
【分析】要求出这个方阵有多少人,就要先求出这个方阵最外层每边多少.已知最内层每边有6人,又知道这个空心方阵有3层,根据方阵问题应用题特点,可以求出这个方阵最外层每边有6+(3-1)×2人,即10人.又根据方阵问题应用题数量关系:空心阵总人数=(外边人数-层数)×层数×4,即可求出这个方阵共有多少人.
【详解】[6+(3-1)×2-3]×3×4=84(人)
答:这个方阵共有84人.
47.个
【分析】棋子总数为:(枚),由于空心方阵总个数=(每边个数-层数)×层数×,所以,每边个数=空心方阵总个数÷层数÷+层数,得出最外层每边有枚棋子。
【详解】16×16÷4÷4+4
=16+4
=20(个)
答:此空心方阵的最外层每边有20个棋子。
【点睛】熟记:空心方阵总个数=(每边个数-层数)×层数×,是解答此题的关键。
48.49人
【分析】最外一层人数除以4的商加1等于方阵一排的人数,方阵的排数与每排人数相等,再用每排人数乘排数即可解答。
【详解】24÷4+1
=6+1
=7(人)
7×7=49(人)
答:参加表演的同学一共有49人。
【点睛】先要计算出方阵一排多少人,然后再作进一步解答。
49.盆
【分析】对于两层方阵,外层比内层多盆,两层共盆,利用和差问题的解法,可以求出外层盆数是:(盆),从而得出需增加的盆数:(盆)。
【详解】(64+8)÷2+8
=72÷2+8
=36+8
=44(盆)
答:还需44盆花。
【点睛】认真观察方阵图形可知,在方阵中,方阵每向里面一层,每边的个数就减少2个,即每向里一层,每层的个数就减少8个,这是解题关键。
50.36人
【分析】最外层每边都是10人,4条边共有:10×4=40(人),由于四个顶点都重复计算了1次,实际最外层共有40-4=36(人),据此解答。
【详解】
(人)
答:最外层一共36人。
51.解:(30﹣5)×5×4+20,
=500+20,
=520(人);
或302﹣(30﹣2×5)2+20,
=900﹣400+20,
=520(人);
答:这个方块队共由520个同学组成.
【详解】【分析】空心方阵的层数是:10﹣5=5层,根据“空心方阵的总人数=(最外层每边的人数﹣空心方阵的层数)×空心方阵的层数×4,”算出人数,再加上20即可得出答案.
52.239人
【分析】排成四层空心方阵多15人,在方阵的空心部分增加一层21人,说明增加这一层的人数就是从外向内第五层的人数是(15+21)人,根据每相邻两层的人数相差8人,可分别求出每层人数,然后相加,再加上多的15人,就可求出四年级的总人数.
【详解】(1)从外向内第五层有:15+21=36(人)
(2)从外向内第四层有:36+8=44(人)
(3)从外向内第三层有:44+8=52(人)
(4)从外向内第二层有:52+8=60(人)
(5)最外层有:60+8=68(人)
(6)四年级一共有:44+52+60+68+15=239(人)
答:四年级的学生一共有239人.
答案第1页,共2页
答案第1页,共2页

展开更多......

收起↑

资源预览