浙江省绍兴市嵊州市2025年初中毕业生学业水平调测数学试卷(PDF版,含答案)

资源下载
  1. 二一教育资源

浙江省绍兴市嵊州市2025年初中毕业生学业水平调测数学试卷(PDF版,含答案)

资源简介

嵊州市 2025 年初中毕业生学业水平调测
数学参考答案
一、选择题(本大题共 10 小题,每小题 3 分,共 30 分.在每小题给出的四个选项中,只有
一项是符合题目要求的)
1 2 3 4 5 6 7 8 9 10
D B C B B A C C A D
二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)
11. a 3x 5y 70,a 1 12 1 13 . .
4 5x 3y 74
14.5 15.20°或 70° 16. 6, 13
三、解答题(本题有 8 小题,第 17~21 题每题 8 分,第 22、23 题每题 10 分,第 24 题 12
分,共 72 分)
0
17 1 2025 1. π

2
2
2
1
1 1 ······························································································ 6
4
1
.···································································································· 2
4
18 x. 2 3
x 1 1 x
解:去分母得: x 2 x 1 3 ···································································· 2
去括号得: x 2x 2 3 ···································································· 2
移项得: x 5 ··································································· 2
x 5 ······································································ 1
经检验: x 5 是原方程的解.······························································ 1
19.(1) 50 25% 200 名 ·········································································· 2
答:本次调查共抽取了 200 名学生.
(2) 200 10 30 60 50 20 30 ,······················································ 3
1200 60 50 30 20 960 名 .····················································· 3
200
答:估计能落实“中小学生每天综合体育活动时间不低于 1 小时”的学生人数为 960 人.
20.解:(1)一名工人每小时做的零件数= 56 3.5 16(个);···························· 2
(2)设智能机器人做的零件数量 y关于工作时间 x小时的函数关系式为
1
k b 0 6 k 24
y kx b,得 1 ,解得 b 4 ,所以 y 24x 4 ·············· 2 k b 80
6
设下午工人做的零件数量 y关于工作时间 x小时的函数关系式为 y mx n,得
4.5m n 56 m 16
,解得 ,所以 y 16x 16 .···························· 2
8m n 112 n 16
所以 24x 4 16x 16 60 ,解得 x 6.·········································· 2
21.(1)如图,过点 A作 AF∥MN,··················1
E
∵AB⊥MN,
∴AF⊥AB. CD
∵ CAB 140 ,
∴ CAF 140 90 50 .················ 1 F G A
∵CD∥MN,
∴CD∥AF,····································· 1
∴ DCE CAF 50 .···················· 1 M H B N
(2)作 EG⊥AF于点 F,交 MN于点 H.
∵ sin EG EAF sin 50 0.766 ,···················································· 1
AE
∴ EG AE 0.766 60 0.766 45.96 cm.············································ 1
∴ EH 45.96 60 105.96 106 cm.·················································· 2
∴点 E到 MN的距离为 106cm.
22.
(1)∵D为斜边 AC的中点,AD=CD,
A E
∴DE=BD,
∴四边形 ABCE是平行四边形,················ 1 D
∵∠ABC=90°,
∵平行四边形 ABCE是矩形,··················· 1 B C
∴AC=BE 图 1,
∴BD= 1 AC.········································ 1
2 E
(2)① 连结 BD,········································ 1 B
∵D为斜边 AC的中点,
1
∴BD= AC,
2
1 D
又∵BE= AC,
2 A C图 2
∴BD=BE,·············································1 E
∴∠EDB=∠E=18°,
∴∠A=∠ABD=36°。···································1 B
② 取 AC中点 D,连结 BD,连结 FD,······· 1
∵D,F分别为 AC BC F, 的中点,
D
∴DF∥AB,DF= 1 AB,···························· 1
2 A 图 3 C
BE= 1∵ AB,
2
∴DF∥BE,DF=BE,
∴四边形 ABCE是平行四边形.································································1
∴EF=BD= 1 AC=2.··············································································1
2
23.解:(1)当 m=1 时, y x2 2x 2 (x 1)2 1···········································1
所以顶点坐标为(1,1).···························································· 2
(2)① y x2 2mx m2 m (x m)2 m
对称轴为直线 x m,··································································· 1
因为m 3≤x1≤m 1,且抛物线的开口向上,所以当 x m 3时, y有最大值,
即 (m 3 m)2 m 1,得m 8 .················································· 2
②因为抛物线的开口向上,
当 y1<y2 时, 2 3m m>3 ,即 2 4m>3.···································· 2
所以 2 4m>3或 2 4m< 3,
1 5
解得m< 或m> .································································· 2
4 4
24.
(1)∵∠CMF=50°, A D
∴∠CDE=25°,··································· 2
∵四边形 ABCD是正方形, G
∴ ADC 90 ,···································· 1 M
∴ ADE 90 25 65 .······················ 1 AF N
(2)①设∠ADF=x°,··································· 1 P
则 DFM CDF 90 x ,··············· 1 B E C
∵∠DAF=50°,
R
∴ DFA DFP 180 50 x 130 x ,········································ 1
∴ MFN 130 x (90 x ) 40 ,················································· 1
②延长 FM交 DP于点 G,
∵ ADF PDF, MDF MFD,且 ADF MDF 90 ,
∴ MFD FDP 90 ,即 FG DP,
∴ GFP P 90
∵ P DAF,
∴ GFP DAF 90 ,··································································· 1
延长 AF,DC交于点 R,
∴ R DAF 90 ,
∴ MFN R,且 FMR是公共角,
∴△FMR∽△NMF.··········································································1
MF MR
∴ ,即MN·MR MF 2 4 .
MN MF
∴当 MR的长最大时,MN的长最小,
当 AR与半圆 M相切时,MR的长最大,即 MF⊥AF,
此时△MFR∽△ADR,
FM FR MR
∴ ,
AD DR AR
FR MR 2 1
即 ,
2 MR 4 FR 4 2
2 MR 2FR,
∴ ,
4 FR 2MR
MR 10∴ ,····················································································1
3
6
∴MN的最小值为 .········································································ 1
5嵊州市2025年初中毕业生学业水平调测
数学
考生须知:
1,全卷分试题卷和答题卷,满分120分,考试时间120分钟.
2,答题时所有试题卷的答案请填在答题卷相应的位置上,做在试题卷上无效.
3,本次考试不使用计年器,
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有
一项是符合题目要求的】
1.下列四个数,最大的数是
A.-2
B.0
C.2
D.-2
2.下列用七巧板拼成的图案轮廓中,是轴对称图形的是
3.据某平台统计,2025年“五一”期间,嵊州市网红街“东前街”共接待游客约175000人
次.数字175000用科学记数法表示为
A.1.75×104
B.17.5×10
C.1.75×103
D.0.175×106
4.为纪念“五·四”运动106周年,某校举办歌咏比赛,某班演唱后五位评委给出的分数为:
9.5,9.2,9.6,9.4,9.5,则这组数据的中位数是
A.9.6
B.9.5
C.9.4
D.9.2
5.估计3V7-√28的值应在
A.3和4之间
B.2和3之间
C.1和2之间
D.0和1之间
6.己知菱形的两条对角线长分别是6cm和8cm,则菱形的边长为
A.5cm
B.6cm
C.8cm
D.10cm
7.已知m是一元二次方程x2-x-2=0的一个根,则代数式2m2-4m+2025的值为
A.2027
B.2028
C.2029
D.2030
8.如图,在平面直角坐标系中,四个点分别表示甲,乙,丙,丁四
件商品的数量y与单价x的情况,且乙,丁两件商品所表示的

点在同一反比例函数图象上,则四件商品中,总价(总价=单价
、丙
×数量)最多的是
0
A.甲
B.乙
C.丙
D.丁
第8题田
数学试题卷第1页(共6页)
9.如图,平面直角坐标系中有四个点E(4,-4),F(-3,0),M
(-2,-4),0(0,0),二次函数y=ar2+bx+c(a,b,c为常数,
且a≠0)的图象经过这四个点中的其中三个点,若要使a取得最
小值,则抛物线y=ax2+bx+c经过的三个点是
A.E,F,M
B.E,F,O
M
C.E,M,O
D.F,M,O
第9题图
10.如图,在△ABC中,∠ACB=90°,分别以△ABC的三边向
外作正方形ACFG,正方形BDEC,正方形ANB.连结
DN,若DN=x,AC=y,BC=a(a为常数),则下列
C
D
各式为定值的是
A.x+y
B.x2+y2
C.¥
D.x2-y2
二、填空题(本大题共6小题,每小题3分,共18分)
M
11.分解因式:a2+a=▲
第10题图
12.一个不透明的袋子里装有1个红球和3个白球,它们除颜色外均相同,从袋中任意摸
出一个球是红球的概率为▲·
13.《算法统宗》中有这样一个问题:今有上禾三束,下禾五束,共价七十钱;上禾五束,下
禾三束,共价七十四钱.问上、下禾每束价各几何?小明设上禾每束x钱,下禾每束y钱,
则符合题意的二元一次方程组是▲·
14.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AE=CD=8,连结OC,则OC的长为
▲,
15.如图,在△MBC中,AB=AC,分别以点B,C为圆心,大于BC长为半径作弧,两
弧交于E,F两点;再以点A为圆心,AB长为半径作弧,交直线EF于点P,连结BP,
则∠BPA的度数是▲·
y
0
E
B
C
第14题田
第15题田
第16题田
数学试题卷第2页(共6页)

展开更多......

收起↑

资源列表