资源简介 嵊州市 2025 年初中毕业生学业水平调测数学参考答案一、选择题(本大题共 10 小题,每小题 3 分,共 30 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1 2 3 4 5 6 7 8 9 10D B C B B A C C A D二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)11. a 3x 5y 70,a 1 12 1 13 . .4 5x 3y 7414.5 15.20°或 70° 16. 6, 13 三、解答题(本题有 8 小题,第 17~21 题每题 8 分,第 22、23 题每题 10 分,第 24 题 12分,共 72 分)017 1 2025 1. π 2 2 2 1 1 1 ······························································································ 6 41 .···································································································· 2 418 x. 2 3 x 1 1 x解:去分母得: x 2 x 1 3 ···································································· 2 去括号得: x 2x 2 3 ···································································· 2 移项得: x 5 ··································································· 2 x 5 ······································································ 1 经检验: x 5 是原方程的解.······························································ 1 19.(1) 50 25% 200 名 ·········································································· 2 答:本次调查共抽取了 200 名学生.(2) 200 10 30 60 50 20 30 ,······················································ 3 1200 60 50 30 20 960 名 .····················································· 3 200答:估计能落实“中小学生每天综合体育活动时间不低于 1 小时”的学生人数为 960 人.20.解:(1)一名工人每小时做的零件数= 56 3.5 16(个);···························· 2 (2)设智能机器人做的零件数量 y关于工作时间 x小时的函数关系式为 1 k b 0 6 k 24y kx b,得 1 ,解得 b 4 ,所以 y 24x 4 ·············· 2 k b 80 6设下午工人做的零件数量 y关于工作时间 x小时的函数关系式为 y mx n,得 4.5m n 56 m 16 ,解得 ,所以 y 16x 16 .···························· 2 8m n 112 n 16所以 24x 4 16x 16 60 ,解得 x 6.·········································· 2 21.(1)如图,过点 A作 AF∥MN,··················1 E∵AB⊥MN,∴AF⊥AB. CD∵ CAB 140 ,∴ CAF 140 90 50 .················ 1 F G A∵CD∥MN,∴CD∥AF,····································· 1 ∴ DCE CAF 50 .···················· 1 M H B N(2)作 EG⊥AF于点 F,交 MN于点 H.∵ sin EG EAF sin 50 0.766 ,···················································· 1 AE∴ EG AE 0.766 60 0.766 45.96 cm.············································ 1 ∴ EH 45.96 60 105.96 106 cm.·················································· 2 ∴点 E到 MN的距离为 106cm.22.(1)∵D为斜边 AC的中点,AD=CD,A E∴DE=BD,∴四边形 ABCE是平行四边形,················ 1 D∵∠ABC=90°,∵平行四边形 ABCE是矩形,··················· 1 B C∴AC=BE 图 1,∴BD= 1 AC.········································ 1 2 E(2)① 连结 BD,········································ 1 B∵D为斜边 AC的中点,1∴BD= AC,21 D又∵BE= AC,2 A C图 2∴BD=BE,·············································1 E∴∠EDB=∠E=18°,∴∠A=∠ABD=36°。···································1 B② 取 AC中点 D,连结 BD,连结 FD,······· 1 ∵D,F分别为 AC BC F, 的中点,D∴DF∥AB,DF= 1 AB,···························· 1 2 A 图 3 CBE= 1∵ AB,2∴DF∥BE,DF=BE,∴四边形 ABCE是平行四边形.································································1 ∴EF=BD= 1 AC=2.··············································································1 223.解:(1)当 m=1 时, y x2 2x 2 (x 1)2 1···········································1 所以顶点坐标为(1,1).···························································· 2 (2)① y x2 2mx m2 m (x m)2 m对称轴为直线 x m,··································································· 1 因为m 3≤x1≤m 1,且抛物线的开口向上,所以当 x m 3时, y有最大值,即 (m 3 m)2 m 1,得m 8 .················································· 2 ②因为抛物线的开口向上,当 y1<y2 时, 2 3m m>3 ,即 2 4m>3.···································· 2 所以 2 4m>3或 2 4m< 3,1 5解得m< 或m> .································································· 2 4 424.(1)∵∠CMF=50°, A D∴∠CDE=25°,··································· 2 ∵四边形 ABCD是正方形, G∴ ADC 90 ,···································· 1 M∴ ADE 90 25 65 .······················ 1 AF N(2)①设∠ADF=x°,··································· 1 P则 DFM CDF 90 x ,··············· 1 B E C∵∠DAF=50°,R∴ DFA DFP 180 50 x 130 x ,········································ 1 ∴ MFN 130 x (90 x ) 40 ,················································· 1 ②延长 FM交 DP于点 G,∵ ADF PDF, MDF MFD,且 ADF MDF 90 ,∴ MFD FDP 90 ,即 FG DP,∴ GFP P 90 ∵ P DAF,∴ GFP DAF 90 ,··································································· 1 延长 AF,DC交于点 R,∴ R DAF 90 ,∴ MFN R,且 FMR是公共角,∴△FMR∽△NMF.··········································································1 MF MR∴ ,即MN·MR MF 2 4 .MN MF∴当 MR的长最大时,MN的长最小,当 AR与半圆 M相切时,MR的长最大,即 MF⊥AF,此时△MFR∽△ADR,FM FR MR∴ ,AD DR ARFR MR 2 1即 ,2 MR 4 FR 4 2 2 MR 2FR,∴ , 4 FR 2MRMR 10∴ ,····················································································1 36∴MN的最小值为 .········································································ 1 5嵊州市2025年初中毕业生学业水平调测数学考生须知:1,全卷分试题卷和答题卷,满分120分,考试时间120分钟.2,答题时所有试题卷的答案请填在答题卷相应的位置上,做在试题卷上无效.3,本次考试不使用计年器,一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的】1.下列四个数,最大的数是A.-2B.0C.2D.-22.下列用七巧板拼成的图案轮廓中,是轴对称图形的是3.据某平台统计,2025年“五一”期间,嵊州市网红街“东前街”共接待游客约175000人次.数字175000用科学记数法表示为A.1.75×104B.17.5×10C.1.75×103D.0.175×1064.为纪念“五·四”运动106周年,某校举办歌咏比赛,某班演唱后五位评委给出的分数为:9.5,9.2,9.6,9.4,9.5,则这组数据的中位数是A.9.6B.9.5C.9.4D.9.25.估计3V7-√28的值应在A.3和4之间B.2和3之间C.1和2之间D.0和1之间6.己知菱形的两条对角线长分别是6cm和8cm,则菱形的边长为A.5cmB.6cmC.8cmD.10cm7.已知m是一元二次方程x2-x-2=0的一个根,则代数式2m2-4m+2025的值为A.2027B.2028C.2029D.20308.如图,在平面直角坐标系中,四个点分别表示甲,乙,丙,丁四件商品的数量y与单价x的情况,且乙,丁两件商品所表示的甲点在同一反比例函数图象上,则四件商品中,总价(总价=单价、丙×数量)最多的是0A.甲B.乙C.丙D.丁第8题田数学试题卷第1页(共6页)9.如图,平面直角坐标系中有四个点E(4,-4),F(-3,0),M(-2,-4),0(0,0),二次函数y=ar2+bx+c(a,b,c为常数,且a≠0)的图象经过这四个点中的其中三个点,若要使a取得最小值,则抛物线y=ax2+bx+c经过的三个点是A.E,F,MB.E,F,OMC.E,M,OD.F,M,O第9题图10.如图,在△ABC中,∠ACB=90°,分别以△ABC的三边向外作正方形ACFG,正方形BDEC,正方形ANB.连结DN,若DN=x,AC=y,BC=a(a为常数),则下列CD各式为定值的是A.x+yB.x2+y2C.¥D.x2-y2二、填空题(本大题共6小题,每小题3分,共18分)M11.分解因式:a2+a=▲第10题图12.一个不透明的袋子里装有1个红球和3个白球,它们除颜色外均相同,从袋中任意摸出一个球是红球的概率为▲·13.《算法统宗》中有这样一个问题:今有上禾三束,下禾五束,共价七十钱;上禾五束,下禾三束,共价七十四钱.问上、下禾每束价各几何?小明设上禾每束x钱,下禾每束y钱,则符合题意的二元一次方程组是▲·14.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AE=CD=8,连结OC,则OC的长为▲,15.如图,在△MBC中,AB=AC,分别以点B,C为圆心,大于BC长为半径作弧,两弧交于E,F两点;再以点A为圆心,AB长为半径作弧,交直线EF于点P,连结BP,则∠BPA的度数是▲·y0EBC第14题田第15题田第16题田数学试题卷第2页(共6页) 展开更多...... 收起↑ 资源列表 2025.5.27绍兴嵊州中考数学模拟试卷.pdf 7_参考答案.pdf