6.2.2 分层抽样--2025湘教版数学必修第一册同步练习题(含解析)

资源下载
  1. 二一教育资源

6.2.2 分层抽样--2025湘教版数学必修第一册同步练习题(含解析)

资源简介

中小学教育资源及组卷应用平台
2025湘教版数学必修第一册
6.2.2 分层抽样
A级 必备知识基础练
1.某学院欲从A,B两个专业共600名学生中,采用分层抽样的方法抽取120人组成宣传团队,已知A专业有200名学生,那么从该专业抽取的学生人数为(  )
A.20 B.30
C.40 D.50
2.某校选修乒乓球课程的学生中,高一年级有50名,高二年级有30名.现用分层抽样的方法在这80名学生中抽取一个样本,已知在高二年级的学生中抽取了6名,则在高一年级的学生中应抽取的人数为(  )
A.6 B.8
C.10 D.12
3.某口罩厂甲、乙、丙三个车间生产了同一种口罩,数量分别为2 400件,1 600件,1 200件.为了解它们的口罩质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从乙车间的产品中抽取了40件,则n=(  )
A.90 B.100
C.120 D.130
4.我校有高一学生850人,高二学生900人,高三学生1 200人,学校团委欲用分层抽样的方法抽取30名学生进行问卷调查,则下列判断正确的是(  )
A.高一学生被抽到的可能性最大
B.高二学生被抽到的可能性最大
C.高三学生被抽到的可能性最大
D.每名学生被抽到的可能性相等
5.某高中学校三个年级共有团干部56名,采用分层抽样的方法从中抽取7人进行睡眠时间调查.其中从高一年级抽取了3人,则高一年级团干部的人数为     .
6.某班有42名男生,30名女生,已知男女身高各有明显不同,现欲调查平均身高,若采用分层抽样方法,抽取男生1人,女生1人,这种做法是否合适 若不合适,应怎样抽取
B级 关键能力提升练
7.某旅行社分年龄统计了大桥落地以后,由香港大桥实现内地前往香港的老中青旅客的比例分别为5∶2∶3,现使用分层抽样的方法从这些旅客中随机抽取n名,若青年旅客抽到60人,则(  )
A.老年旅客抽到150人
B.中年旅客抽到20人
C.n=200
D.被抽到的老年旅客以及中年旅客人数之和超过200
8.(多选题)某中学高一年级有20个班,每班50人;高二年级有30个班,每班45人.甲就读于高一,乙就读于高二.学校计划从这两个年级中共抽取235人进行视力调查,下列说法中正确的是(  )
A.应该采用分层抽样法
B.高一、高二年级应分别抽取100人和135人
C.乙被抽到的可能性比甲大
D.该问题中的总体是高一、高二年级的全体学生的视力情况
9.(多选题)某工厂生产A,B,C三种不同型号的产品,其相应产品数量之比为2∶5∶3,现用分层抽样方法抽出一个容量为n的样本,样本中A型号产品有16件,则(  )
A.此样本的容量n为20
B.此样本的容量n为80
C.样本中B型号产品有40件
D.样本中B型号产品有24件
10.某高中学校为了促进学生个体的全面发展,针对学生发展要求,开设了富有地方特色的“泥塑”与“剪纸”两个社团,已知报名参加这两个社团的学生共有800人,按照要求每人只能参加一个社团,各年级参加社团的人数情况如下表:
年级 高一 高二 高三
泥塑 a b c
剪纸 x y z
其中x∶y∶z=5∶3∶2,且“泥塑”社团的人数占两个社团总人数的,为了了解学生对两个社团活动的满意程度,从中抽取一个50人的样本进行调查,则从高二年级“剪纸”社团的学生中应抽取    人.
11.某单位有2 000名职工,老年人、中年人、青年人分布在管理、技术开发、营销、生产各部门中,如表所示:
人数 管理 技术开发 营销 生产 合计
老年人 40 40 40 80 200
中年人 80 120 160 240 600
青年人 40 160 280 720 1 200
合计 160 320 480 1 040 2 000
(1)若要抽取40人调查身体状况,则应怎样抽样
(2)若要开一个25人的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人
(3)若要抽取20人调查对国家的三胎政策的认知情况,则应怎样抽样
C级 学科素养创新练
12.为了对某课题进行研究,分别从A,B,C三所高校中用分层抽样法抽取若干名教授组成研究小组,其中高校A有m名教授,高校B有72名教授,高校C有n名教授(其中0(1)若A,B两所高校中共抽取3名教授,B,C两所高校中共抽取5名教授,求m,n;
(2)若高校B中抽取的教授数是高校A和C中抽取的教授总数的,求三所高校的教授的总人数.
答案:
1.C 据题意可知抽样比为,则A专业抽取人数为200×=40(人),故选C.
2.C 设样本容量为n,则n×=6,解得n=16,所以高一所抽人数为16×=10.故选C.
3.D ∵甲、乙、丙三个车间生产的产品件数分别是2 400,1 600,1 200,∴甲、乙、丙三个车间生产的产品数量的比依次为6∶4∶3,故乙车间生产产品所占的比例为,∴样本中乙车间生产的产品有40件,占总产品的,∴样本容量n=40÷=130.故选D.
4.D 由抽样的定义知,无论哪种抽样,样本被抽到的可能性都相同,故每名学生被抽到的可能性相等,故选D.
5.24 高一年级团干部的人数为56×=24.
6.解不合适,由于抽样比例数过小,仅抽取2人,很难准确反映总体情况,又因为男、女生人数差异较大,抽取人数相同,也不合理,故此法不合适,抽取人数过多,失去了抽样调查的统计意义,抽样太少,不能准确反映真实情况,考虑到本题应采用分层抽样及男、女生各自的人数,故按7∶5抽取更合适,即男生抽取7人,女生抽取5人,各自用抽签法或随机数法抽取组成样本.
7.C 由题意,香港大桥实现内地前往香港的老中青旅客的比例分别为5∶2∶3,现使用分层抽样的方法从这些旅客中随机抽取n名,若青年旅客抽到60人,所以,解得n=200(人).故选C.
8.ABD 由于各年级的学生人数不一样,因此应采用分层抽样法,所以A正确;由于分层抽样的抽样比为,因此高一年级的1 000人中应抽100人,高二年级的1 350人中应抽135人,所以B正确;甲乙被抽到的可能性都是,因此C不正确,根据总体的概念可知D正确,故选ABD.
9.BC 设样本为n,则n=16÷=80,故A错误,B正确;
样本中B型号产品有:80×=40(件),故C正确,D错误.故选BC.
10.6 (方法1)因为“泥塑”社团的人数占总人数的,
故“剪纸”社团的人数占总人数的,
所以“剪纸”社团的人数为800×=320;
因为“剪纸”社团中高二年级人数比例为,所以“剪纸”社团中高二年级人数为320×=96.
由题意知,抽样比为,
所以从高二年级“剪纸”社团中抽取的人数为96×=6.
(方法2)因为“泥塑”社团的人数占总人数的,
故“剪纸”社团的人数占总人数的,所以抽取的50人的样本中,“剪纸”社团中的人数为50×=20.
又“剪纸”社团中高二年级人数比例为,所以从高二年级“剪纸”社团中抽取的人数为20×=6.
11.解(1)因为总体是由差异比较明显的几部分组成,所以要抽取40人调查身体状况,应按老年人、中年人、青年人分层抽样方法.从老年人中抽取40×=4(人),从中年人中抽取40×=12(人),
从青年人中抽取40×=24(人);
(2)要开一个25人的讨论单位发展与薪金调整方面的座谈会,应按部门分层抽样法,
从管理层抽取25×=2(人),从技术开发部抽取25×=4(人),
从营销部抽取25×=6(人),从生产部抽取25×=13(人);
(3)要抽取20人调查对国家的三胎政策的认知情况,应按老年人、中年人、青年人分层抽样方法,
从老年人中抽取20×=2(人),从中年人中抽取20×=6(人),
从青年人中抽取20×=12(人).
12.解(1)因为0所以高校A中抽取1人,高校C中抽取3人,
所以,
解得m=36,n=108.
(2)因为高校B中抽取的教授数是高校A和C中抽取的教授总数的,所以(m+n)=72,
解得m+n=108,
所以三所高校的教授的总人数为m+n+72=180.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)

展开更多......

收起↑

资源预览