吉林省长春市东北师范大学附属中学2024-2025学年高三下学期第五次模拟考试数学试题(图片版,含答案)

资源下载
  1. 二一教育资源

吉林省长春市东北师范大学附属中学2024-2025学年高三下学期第五次模拟考试数学试题(图片版,含答案)

资源简介

2024-2025学年下学期
东北师大附中
(数学)科试卷
高三年级第五次模拟考试
注意事项:
1.答题前,考生须将自己的姓名、班级、考场/座位号填写在答题卡指定位置上,并粘贴条形
码。
2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需
改动,用橡皮擦干净后,再选涂其它答案标号。
3.回答非选择题时,请使用0.5毫米黑色字迹签字笔将答案写在答题卡各题目的答题区域内,
超出答题区域或在草稿纸、本试题卷上书写的答案无效。
4.保持卡面清洁,不要折叠、不要弄皱、弄破,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符
合题目要求的,
1.已知集合A={0,1},B={0,a+1,a-1},若AcB,则a=
A.2
B.0
C.0或2
D.1或2
2.1+i2025
1-i2025
A.-i
B.i
C.1+i
D.-1+i
3.已知向量a=(m3),b=(1n+2),则“n=1”是“a/乃"的
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
4.抛物线y2=4x的焦点为F,P为抛物线上一点,若|PF|=3,则P点的横坐标为
A.±1
B.1
C.±2
D.2
5.已知tan(a+)=7,则sin2a的值是
A.是
B美
C.号
D.
数学试卷第1页(共4页)
6.记Sn为等差数列{an}的前n项和,已知,S5=S10,as=1,则a=
A-品
B-月
C.
D.
7.在三棱锥P-ABC中,PA=PB=PC=V2.若该三棱锥的四个顶点都在球O
的表面上,则当三棱锥体积最大时,球0的表面积为
A.4
B.6π
C.8n
D.9x
8.已知点P在圆.x2+y2=π2上运动,若过点P可以作曲线y=sinx(π≤x≤π)的切线,则点
P的轨迹长度是
A号
B.π2
C.3n2
2
D.2π2
二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要
求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
9.设m,n为直线,a,B为平面,则下列结论正确的是
A.若m⊥a,n∥a,则m⊥n
B.若m∥a,n∥a,则m∥n
C.若m⊥a,m∥B,则a⊥B
D.若m∥B,a⊥B,则m⊥a
10.已知函数f(x)=sin2x+2cosx,则
A.f(x)的最小正周期为π
B.f(x)的图象关于点(0)对称
C.f(x)在区间(0,2T)上有4个零点
D.()的值域为【兰,2习
11.己知定义在R上的函数f(x)的图象是一条连续不断的曲线,且当x≤2时,f(x)=x,当X>2
时,f(x)=f(x-1)+2f(x-2),则
A.f(3)=4
B.f(9)+f(10)=768
C.f(2025)=2f(2024)+1
D.∑1f(i)=2”-1
三、填空题:本题共3小题,每小题5分,共15分.
12.已知x2+y2-xy=1,则X+y的最大值为·
x2.y2
13.已知点A(1,1),P为椭圆一+一=1上一点,F为左焦点,则|PA+|P℉的最小值为
43高三年级第五次模拟考试数学参考答案
一、
单项选择题
二、多项选择题
1
2
3
4
5
6
7
8
9
10
11
c
B
A
D
D
B
AC
BD
ABD
三、填空题
12.2
13.3
14.260
四、解答题
15.(本小题满分13分)
【解析】(1)2AD=AB+AC,平方得20=b2+c2+2 bccos A,
再由余弦定理得a2=b2+c2-2 bccos A=100,
相加得b2+c2=60.
【另解b2+c2=(AD+DC2+(AD-DC2=2(AD2+DC2)=25+25)=60】
(2)由(I)得2 bcosA=--40,又SaAc=号besin A=10
相除得,tanA=-l,A=3r.
4
16.(本小题满分15分)
【解析】(1)证明:
取AD中点O,连OP,OC,则PO⊥AD,又平面PAD⊥平面ABCD,
所以PO⊥平面ABCD,PO⊥BD,
tan∠BDA=tan∠OCD,
BD⊥OC,
BD⊥平面POC,BD⊥PC,
又PC⊥DM,PC⊥平面BDM;
(2)取BC中点N,以O为原点,分别以OA,ON,OP为x,y,z轴正方向,建系如图,
10.D(-10.0.C(-1.20,/0.0).M.
2
DB=(2,1,0),DP=(1,0,),PC=(-1,2,-√5),
设平面PBD的一个法向量为n=(x,y,z),

n-DB=2x+y=0,=(W5,-25,-10,
nDP=x+3=0
PC=(-1,2,-√3)为平面BDM的法向量,
cos(n,PC)=--43-_V6
4×2√24
所以平面P8D与平面BDM夹角的余弦值为
d
17.(本小题满分15分)
【解折1)西数f-“-bx2-2为偶函数。
x)=fx),e-b(-x)-2=。*bx2、2
e+
em+l_“+l,1+e=+1,
ear-t
=e,e=e,a=2.
(2)f0=-e+1-hm2-2=c+e*-bx2-2,
f'(x)=e*-e *-2bx,f"(x)=e*+e *-2b,
(i)若b≤1,则f"(x)=e*+ex-2b≥2-2b≥0,
f'(x)=e-e-2bx单调递增,
又f'(0)=0,
所以,当x<0时,f'(x)<0,f(x)单调递减,
当x>0时,f'(x)>0,f(x)单调递增,
f(x)in=f(0)=0,f(x)≥0恒成立,
(i)若b>1,则f"(x)=e"+ex-2b,f"(0)=2-2b<0,
3x>0,使得x∈(0,),f"(x)<0,f"(x)单调递减,
f'(x)综上,b≤1.

展开更多......

收起↑

资源列表