山东省青岛市2025年高三年级第三次适应性检测物理(PDF版,含答案)

资源下载
  1. 二一教育资源

山东省青岛市2025年高三年级第三次适应性检测物理(PDF版,含答案)

资源简介

2025年高三年级第三次适应性检测
物理试题
2025.05
注意事项:
1.答题前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需
改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本
试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、单项选择题:本题共8小题,每小题3分,共24分。在每小题给出的四个选项中,只有一
项是符合题目要求的。
1.钷元素(Pm)是“万能之土”稀土元素家庭成员之一。制备其同位素的核反应方程为:
16Nd+n→7Pm+X,17Pm不稳定,发生衰变:17Pm→3Sm+Y,钷的半衰期为2.64年。
下列说法正确的是
A.X与阴极射线属于同种粒子
B.Y来源于17Pm的核外电子
C.13Sm比结合能小于Pm比结合能
D.每经过2.64年,发生衰变的17Pm的数量相同
2.2025年4月30日神舟十九号载人飞船返回舱在东风着陆场成功着陆。返回舱在距地面10km
高度打开降落伞,距地面1.125高处4台反推发动机同时点火,产生竖直向上的恒定推力,
最终以2m/s的速度着陆。该过程返回舱运动的v-t图像如图所示,重力加速度g=10ms2,
下列说法正确的是
Av(m.s)
A.0~t1,返回舱内的宇航员处于失重状态
200
B.0~t1,返回舱的平均速度为103.5mfs
C.单台发动机的推力约为返回舱重力的月
04
t红tsts
D.反推发动机的工作时间为0.25s
3.将小球以初速度%竖直向上抛出,经过一段时间小球又落回抛出点,速度大小为y,运动过程
中小球所受空气阻力大小与小球速率成正比,重力加速度为g,则小球在空中运动时间为
A.I=Yo+v
B.1=Yo+v
C.I=Yo-v
D.t=20-v)
2g
2g
物理试题第1页共8页
4.三根平行长直导线a、b、c中均通有恒定电流,导线a、b固定在水平面上,导线c通过轻质
绝缘细线与力传感器相连,截面图如图所示,此时导线c处于静止状态且力传感器的示数恰
好为零,下列说法正确的是
力传感器
A.导线a、b中的电流方向相反
B.导线a、c中的电流方向相同
O
C.若导线b中的电流诚小,细线将向右偏转
dob
D.若导线b中的电流反向,细线将向左偏转
5.如图甲所示,白鹤滩水电站是我国实施“西电东送”的重大工程,其输电原理如图乙所示。
设输电功率为P,输电电压为U,输电线总电阻为r,仅考虑输电线的功率损耗。下列说法正
确的是
A.输电线上的电流1=
2
B.输电线上损耗的功率P=

C.P一定时,箱电电压变为号,输电线损耗的功率变为原来的4倍
D.U一定时,输电功率变为2P,用户得到的功率变为原来的2倍
6.我国高分十二号05星运行轨道高度为600km,地球同步轨道卫星高度为35600km,地球半径
为6400km。关于05星,下列说法正确的是
A.运行周期为40N6mim
B.发射速度大于11.2km/s
C.能始终定点在地球表面某位置正上方
D.与同步轨道卫星运行线速度之比为√70:1
7.如图所示,水平向右的匀强电场中固定倾角为30°的足够长斜面,质量为m、带电量为+q的
小球以初速度从斜面底端斜向上抛出,初速度方向与水平方向间的夹角为60°。已知匀强电
场的电场强度E=3mg,重力加速度为g,不计空气阻力。小球从抛出到落回斜面的过程中,
6g
下列说法正确的是
A,机械能不变
B.离斜面最远时动能最小
C.
运动的时间为3V3g
30
1g
D.运动的时间为4W3
178
物理试题第2页共8页2025 年高三年级第三次适应性检测
物理答案
一、单项选择题:本大题共 8 小题,每小题 3分,共 24 分。
1.A 2.D 3.B 4.C 5.C 6.A 7.D 8.C
二、多项选择题:本题共 4小题,每小题 4 分,共 16 分。
9.AC 10.CD 11.AC 12.ABC
三、非选择题:本题共 6 小题,共 60 分。
13.(7分)(1)1.60(1分); 7.5×10-7(2 分); (2)S2(2分); 3.0×10-6(2 分)
14.(7分)(1)D(1分); (2)1.0×10-7(2 分);(3)0.87(2 分) 调小(2 分)
15.(7分)
1 p p( )加热过程气体经历等容变化: 1 2 ·········································(1 分)
T1 T2
p2S p0S f ················································································· (1 分)
解得: p1 0.96 10
5Pa ····································································· (1 分)
充气过程中: p1V p0V2 p2V ··························································· (1 分)
V V1 V液
解得:V 375ml ···········································································(1 分)液
(2)瓶内原有气体, p1V p0V3 ························································(1 分)
m V 1
注入气体与原有气体质量的比值 注 2 ········································(1 分)
m原 V3 4
评分标准:第 1 问,5分;第 2问,2 分。共 7 分。
16.(9分)
(1)设弹簧弹开两棒过程任一时刻流过两棒的电流为 i,有 Fa 2BiL Fb Bi 2L
故两棒系统动量守恒。mxa 2mxb ·······················································(1 分)
xa xb x0 ····················································································· (1 分)
解得: x 2x 0 , x x 0 ·································································· (1 分)a 3 b 3
(2)弹簧恢复原长时,有mva 2mv0 ··················································(1 分)
1 kx2 1 mv2 1 2mv2 Q Q ···························································(1 分)
2 0 2 a 2 0 a b
物理答案 第 1 页 共 4 页
Qa r ·························································································(1 分)
Qb 2r
2
解得:Q kx 0 mv 2 ········································································(1 分)a 6 0
(3)闭合开关 S后,设 b棒继续运动的距离为 xb ,
有 B B 2Lv 4B
2 2
2L t p,即: L x p
R 2r R 2r
4B2L2求和得: x 2mv ···································································(1 分)
R 2r b 0
解得: d x x x0 mv (R 2r) 0 ·····················································(1 分)b b 3 2B2L2
评分标准:第 1 问,3分;第 2问,4 分;第 3 问,2 分。共 9 分。
17.(14 分)
(1)粒子在加速电场中有: qU= 1 mv2 ················································(1 分)
2 0
mv2
在磁场中有: qv0B0=
0 ··································································(1 分)
r1
T= 2πr1 ························································································· (1 分)
v0
当粒子在圆形磁场中轨迹对应弦长最长,为圆形磁场直径 2a时,
粒子在磁场中运动的时间最长
轨迹如图:
对应轨迹圆运动圆心角 60°,
T πm
在磁场中运动的最长时间 t ··················································(2 分)
6 3qB0
(2)
(i)①d=0,粒子直线运动经过 O点···················································(1 分)
②粒子在右侧磁场中匀速圆周运动,由牛顿第二定律得:
v2
2 3qv 00B0 m ··············································································(1 分)r2
O
3a a
解得: r2 3 r2
由几何关系得:当粒子指向圆心进入无磁场区域时,粒子轨迹与对称轴相切(1 分)
2 3a
所以,粒子到对称轴的距离: d 2r2 ·········································(2 分)3
物理答案 第 2 页 共 4 页
(ii)取临界状态,粒子在右侧磁场中运动轨迹圆恰好与无磁场区域圆相切,如图所示。
O1
r1
0.75a
a O
O2
3
题目要求有一半的粒子圆形区域,所以上下两轨迹圆圆心距离为 a ········· (2 分)
2
3a
由几何关系得: a 2 ( )2 (a r )23 ··················································· (1 分)4
解得:r3=0.25a
v2
由牛顿第二定律得: qv0B2 m
0
r3
解得: B2 8B0 ···············································································(1 分)
评分标准:第 1 问,5分;第 2问,9 分。共 14 分。
18.(16分)
(1)C斜上抛运动分解成水平匀速和竖直方向竖直上抛运动。
竖直方向: 2gh v 2y ,······································································ (1 分)
解得: v y 4m/s
v
另有: tan53 y ··········································································· (1 分)
v x
v0 v
2
x v
2
y 5m / s ································································· (1 分)
(2)C弹出时,AC系统水平方向动量守恒:mAvA mCvx ·····················(1 分)
解得: vA 0.6m/s
C斜上抛运动,竖直方向:vy=at1························································(1 分)
解得:t1=0.4s
水平方向 A匀速运动:Δd=vAt···························································(1 分)
解得:Δd=0.24m·············································································(1 分)
(3)规定向左为正方向,水平方向 BC第一次共速过程动量守恒,
mCvx mC mB v1,······································································· (1 分)
解得: v1 1.5m/s
m g x 1 1由能量转化和守恒得: m 2 2C 1 Cv x (mC mB )v1 ························(1 分)2 2
物理答案 第 3 页 共 4 页
x 9解得: 1 m20
B与 A 第一次弹性碰撞,
mAvA mBv1 mAvA1 mBvB ······························································· (1 分)
1 m v2 1A A m v
2 1 2 1 2
B 1 mAvA1 mBvB ····················································· (1 分)2 2 2 2
解得, vA 0.1m/s , vB 2m/s
BC第二次共速过程,动量守恒,
mCv1 mBvB mC mB v2 ,
v 1解得: 2 m/s4
1 1
由能量转化和守恒得: m g x m v2 m v2 1C 2 C 1 B B (mC m )v
2
2 2 2 B 2
解得: s x1 x
17
2 m ································································· (1 分)16
(4)整个过程中,C相对于 B向左运动的距离为Δx,由能量转化和守恒:
mCg x
1
mAv
2 1
A m
2
Cvx ···································································(1 分)2 2
解得Δx=1.08m
对 AC整体和 B运用人船模型得:
(mA mC)xA1 mBxB
xA1 xB 3 0.24 1.08 2.16m
A 1 2.16所以 向右运动的位移为: xA1 2.16m m ································(1 分)7 7
对 AB整体和 C运用人船模型得:
(mA mB)xA2 mCxC
xA2 xC 3 0.24 1.2 4.44m
1 4.44
所以 A向右运动的位移为: xA2 4.44m m ·······························(1 分)7 7
x x 33A1 xA2 m 0.94m ······························································(1 分)35
评分标准:第 1 问,3分;第 2问,4 分;第 3 问,5 分;第 4 问,4分。共 16分。
物理答案 第 4 页 共 4 页

展开更多......

收起↑

资源列表