资源简介 大庆市第五十七中学2024—2025学年度下学期八年级第一次月考数 学 试 题一、单项选择题:(本题共10小题,每小题3分,共30分)1.(本题3分)给出下列分式:.其中不是最简分式的个数是( )A.2 B.3 C.4 D.52.(本题3分)下列关于的方程中,是分式方程的是( )A. B. C. D.3.(本题3分)若分式中a,b都扩大到原来的2倍,则分式的值是( )A.不变 B.缩小为原来的C.扩大为原来的2倍 D.扩大为原来的4倍4.(本题3分)要使分式有意义,的取值应满足( )A. B. C. D.5.(本题3分)已知分式的值等于零,那么x的值是( )A.4 B. C. D.06.(本题3分)如果,那么代数式的值为( )A. B. C. D.7.(本题3分)如果方程有增根,那么m的值等于( )A. B.4 C.5 D.8.(本题3分)某快递公司请了甲、乙两名搬运工搬运包裹,甲比乙每小时多搬运包裹,甲搬运包裹所用的时间与乙搬运包裹所用的时间相等,求甲、乙两人每小时分别搬运多少包裹?若设甲每小时搬运货物,则下列方程正确的是( )A. B. C. D.9.(本题3分)下列计算结果正确的有( )①;②;③;④A.1个 B.2个 C.3个 D.4个10.(本题3分)若关于x的一元一次不等式组的解集为,且关于y的分式方程的解为负整数,则所有满足条件的整数a的值之和是( )A. B. C. D.二、填空题:(本题共8个小题,每小题3分,共24分)11.(本题3分)约分: .12.(本题3分),和的最简公分母是 .13.(本题3分)若关于的方程的解为,则的值是 .14.(本题3分)一份工作,甲单独做需天完成,乙单独做需天完成,则甲、乙两人合作一天的工作量是 .15.(本题3分)若关于的分式方程的解是正数,则的取值范围是 .16.(本题3分)已知,则分式的值为 .17.(本题3分)若,则的值是 .18.(本题3分)对于代数式m和n,定义运算“”:,例如:,若,则 .三、解答题:(本题共9个小题,共66分)19.(本题8分)约分:(1) (2)20.(本题12分)计算:(1).(2).(3).21.(本题8分)某商场经理预测一种应季羊毛衫能在市场上畅销,就用5000元购进一批这种羊毛衫,上市后果然供不应求.于是经理又用11000元购进了第二批这种羊毛衫,所购数量是第一批购进量的2倍,但每件的进价贵了5元.求该商场第一批羊毛衫每件的进价.22.(本题8分)(1)已知,求的值;(2)先化简,再求值:,并从,,中选一个合适的数作为的值代入求值.23.(本题6分)解下列分式方程:(1); (2).24.(本题8分)定义:若两个分式的和为n(n为正整数),则称这两个分式互为“n阶分式”,例如:,则分式与互为“3阶分式”.(1)分式与互为“________阶分式”;(2)已知正数x,y满足,求证:分式与互为“2阶分式”;(3)若分式与互为“1阶分式”(其中a,b均为正数),求的值.25.(本题8分)随着新能源汽车使用的日益普及,各个小区都纷纷完善新能源汽车的配套设施,其中新能源充电桩的建设成为重点工作,某小区也不例外,计划购置单枪、双枪两款新能源充电桩,来满足小区内新能源汽车车主日益增长的充电需求,然而,在购置过程中,面临着不同的价格、数量以及预算限制等问题,就像下面所描述的情况一样.某小区计划购置如图所示的单枪、双枪两款新能源充电桩,购置充电桩的相关信息如表:单枪充电桩 双枪充电桩花费:元 花费:元单价:元/个 单价:元/个(1)若本次购买单枪充电桩的数量比双枪充电桩的数量多个,求单枪、双枪两款新能源充电桩的单价;(2)在(1)的条件下,根据居民需求,小区决定再次购进单枪、双枪两款新能源充电桩共个,已知单枪新能源充电桩的单价比上次购买时提高了,双枪新能源充电桩的单价比上次购买时降低了,如果此次加购小区预备支出不超过元,求小区最少需要购买单枪新能源充电桩的数量.26.(本题8分)阅读下面的材料:把一个分式写成两个分式的和叫作把这个分式表示成“部分分式”.例:将分式表示成部分分式.解:设,将等式右边通分,得,依据题意,得,解得,所以请你运用上面所学到的方法,解决下面的问题:(1)(,为常数),则 , ;(2)一个容器装有水,按照如下要求把水倒出:第次倒出,第次倒出的水量是的,第次倒出的水量是的,第次倒出的水量是的……第次倒出的水量是的……按照这种倒水的方法,请说明这的水是否能倒完?如果能,多少次才能倒完?如果不能,请说明理由;(3)按照(2)的条件,现在重新开始实验,按照如下要求把水倒出:第次倒出,第次倒出的水量是,第次倒出的水量是,第次倒出的水量是,请问经过多少次操作后,杯内剩余水量能否变成原来水量的?试说明理由.大庆市第五十七中学2024—2025学年度下学期八年级第一次月考数 学 试 题 参 考 答 案题号 1 2 3 4 5 6 7 8 9 10答案 B D C B A B A A C B11. 12.13./ 14.15.且 16.17.4 18.19.(1)解:;(2)解:20.(1)解:原式;(2)解:原式;(3)解:原式21.解:设该商场第一批羊毛衫每件的进价是x元根据题意,得,解得,经检验,是方程的解,且符合题意.答:该商场第一批羊毛衫每件的进价是50元.22.(1)解:,.,,;(2)解:,且,且,当时,原式.23.解:(1)方程两边乘x-2,得x-3+x-2=-3,解得x=1,检验:当x=1时,x-2=﹣1≠0,则x=1是原方程的解;(2)方程两边乘(x+2)(x-2),得(x-2)2+4=x2-4,解得x=3,检验:当x=3时,x2-4=5≠0,则x=3是原方程的解.24.(1)5(2) 证明:把代入得,,与互为“2阶分式”;(3)解:分式与互为”1阶分式”,,,,即,又为正数,,的值为.25.(1)解:根据题意,得解得:经检验,是原方程的解,且符合题意,(元/个)答:单枪新能源充电桩的价格为1000元/个,双枪新能源充电桩的价格为1500元/个;(2)解:单枪新能源充电桩的单价比上次购买时提高了,则现在单枪新能源充电桩的单价为(元/个)双枪新能源充电桩的单价比上次购买时降低了,则现在双枪新能源充电桩的单价为(元/个)设再次购进单枪新能源允电社个,则购进双枪新能源允电社个,总花费为元∵此次加购小区预备支出不超过元∴解得∴的最小值为答:小区最少需要购买单枪新能源充电桩8个.26.(1),;(2)解:∵,∴这的水不能倒完;(3)解:由题意可得,倒了次后剩余的水量为,∴,解得,经检验是原方程的解,∴经过次操作之后能达到. 展开更多...... 收起↑ 资源预览