资源简介 中小学教育资源及组卷应用平台北师大八年级下册数学期末考试高频考题合集一.选择题(共14小题)1.在代数式,,,中,分式有( )A.1个 B.2个 C.3个 D.4个2.由下列条件不能判定△ABC为直角三角形的是( )A.∠A+∠B=∠C B.a:b:c=1:1:2C.(b+c)(b﹣c)=a2 D.3.下列说法不一定成立的是( )A.若a>b,则a+c>b+c B.若a+c>b+c,则a>bC.若a>b,则ac2>bc2 D.若ac2>bc2,则a>b4.如图所示,在湖边取一个可以直接到达A、B两点的点O,连结OA、OB,分别在OA、OB上取中点C,D,连结CD,并测得CD=a,由此就知道了AB间的距离是( )A. B.2a C.a D.3a5.已知关于x的分式方程的解是非负数,则m的取值范围是( )A.m≤3 B.m≥3 C.m≤3且m≠﹣1 D.m≤2且m≠﹣16.清明放假期间,小明准备打出租车去离家10千米的金沙遗址博物馆,学习古蜀国历史和考古知识,由于恰逢打车高峰期,他决定骑共享单车前往金沙遗址博物馆,结果比打出租车要多花30分钟,已知出租车的平均速度是骑共享单车的平均速度的2倍,若设骑共享单车的平均速度为x千米/时,则可列方程为( )A. B.C. D.7.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是( )A.2.5 B. C. D.28.如图,△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为( )A. B.1 C. D.79.如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为( )A. B.2 C. D.10﹣510.如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为( )A. B. C. D.11.如图,△ABC的周长为26,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=10,则PQ的长为( )A. B. C.3 D.412.将五个边长都为2cm的正方形按如图所示摆放,点A、B、C、D分别是四个正方形的中心(对角线的交点),则图中四块阴影面积的和为( )A.2cm2 B.4cm2 C.6cm2 D.8cm213.如图, ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,ABBC,连接OE.下列结论:①∠CAD=30°;②S ABCD=AB AC;③OB=AB;④OEBC,成立的个数有( )A.1个 B.2个 C.3个 D.4个14.如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+3;⑤S△AOC+S△AOB=6.其中正确的结论是( )A.①②③⑤ B.①②③④ C.①②③④⑤ D.①②③二.填空题(共6小题)15.若不等式(a﹣3)x>1的解集为x,则a的取值范围是 .16.若2,则 .17.若不等式组无解,则m的取值范围是 .18.若关于x的分式方程无解,则m= .19.若不等式组恰有两个整数解.则实数a的取值范围是 .20.化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99= .三.解答题(共20小题)21.解不等式组:.22.先化简再求值:,其中.23.分解因式:(1)2x2y﹣8xy+8y;(2)a2(x﹣y)﹣9b2(x﹣y);(3)9(3m+2n)2﹣4(m﹣2n)2;(4)(y2﹣1)2+6(1﹣y2)+9.24.已知,求的值.25.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?26.如图,点O是等边△ABC内一点,D是△ABC外的一点,∠AOB=110°,∠BOC=α,△BOC≌△ADC,∠OCD=60°,连接OD.(1)求证:△OCD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形.27.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CFBC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长.28.如图,在△ABC中,过点C作CD∥AB,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若GB=3,BC=6,BF,求AB的长.29.如图,点C是线段AB上除点A、B外的任意一点,分别以AC、BC为边在线段AB的同旁作等边△ACD和等边△BCE,连接AE交DC于M,连接BD交CE于N,连接MN.(1)求证:AE=BD;(2)求证:MN∥AB.30.如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.31.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.32.如图,△ABC为等边三角形,D、F分别为BC、AB上的点,且CD=BF,以AD为边作等边△ADE.(1)求证:△ACD≌△CBF;(2)点D在线段BC上何处时,四边形CDEF是平行四边形且∠DEF=30°.33.如图,点M,N分别在正方形ABCD的边BC,CD上,且∠MAN=45°.把△ADN绕点A顺时针旋转90°得到△ABE.(1)求证:△AEM≌△ANM.(2)若BM=3,DN=2,求正方形ABCD的边长.34.如图,在△ABC中,∠BAC=90°,∠B=45°,BC=10,过点A作AD∥BC,且点D在点A的右侧.点P从点A出发沿射线AD方向以每秒1个单位的速度运动,同时点Q从点C出发沿射线CB方向以每秒2个单位的速度运动,在线段QC上取点E,使得QE=2,连接PE,设点P的运动时间为t秒.(1)若PE⊥BC,求BQ的长;(2)请问是否存在t的值,使以A,B,E,P为顶点的四边形为平行四边形?若存在,求出t的值;若不存在,请说明理由.35.如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,点P从点A出发以2cm/s的速度沿A→D→C运动,点P从点A出发的同时点Q从点C出发,以1cm/s的速度向点B运动,当点P到达点C时,点Q也停止运动.设点P,Q运动的时间为t秒.(1)从运动开始,当t取何值时,PQ∥CD?(2)从运动开始,当t取何值时,△PQC为直角三角形?36.观察探究,完成证明和填空.如图,四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,顺次连接E、F、G、H,得到的四边形EFGH叫中点四边形.(1)求证:四边形EFGH是平行四边形;(2)如图,当四边形ABCD变成等腰梯形时,它的中点四边形是菱形,请你探究并填空:当四边形ABCD变成平行四边形时,它的中点四边形是 ;当四边形ABCD变成矩形时,它的中点四边形是 ;当四边形ABCD变成菱形时,它的中点四边形是 ;当四边形ABCD变成正方形时,它的中点四边形是 ;(3)根据以上观察探究,请你总结中点四边形的形状由原四边形的什么决定的?37.如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为 ,数量关系为 .②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?(2)如果AB≠AC,∠BAC≠90°点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?并说明理由.38.如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.39.如图,在四边形ABCD中,AD=6,BC=16,AD∥BC,∠B=60°,E是BC的中点,点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也停止运动,设运动时间为t s.(1)PD= ;CQ= ;QE= (用含t的代数式表示);(2)当t为何值时,以P,Q,E,D为顶点的四边形是平行四边形?40.在等边△ABC的两边AB、AC所在直线上分别有两点M、N,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系及△AMN的周长Q与等边△ABC的周长L的关系.(1)如图1,当点M、N在边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是 ;此时 ;(2)如图2,点M、N在边AB、AC上,且当DM≠DN时,猜想(I)问的两个结论还成立吗?若成立请直接写出你的结论;若不成立请说明理由.(3)如图3,当M、N分别在边AB、CA的延长线上时,探索BM、NC、MN之间的数量关系如何?并给出证明.北师大八年级下册数学期末考试高频考题合集参考答案与试题解析一.选择题(共14小题)题号 1 2 3 4 5 6 7 8 9 10 11答案 C B C B C C B A B C C题号 12 13 14答案 B C A一.选择题(共14小题)1.在代数式,,,中,分式有( )A.1个 B.2个 C.3个 D.4个【分析】根据分式定义:如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式进行分析即可.【解答】解:在代数式,,,中,分式有,,,共3个,故选:C.【点评】此题主要考查了分式,关键是掌握分式的分母必须含有字母,而分子可以含字母,也可以不含字母.2.由下列条件不能判定△ABC为直角三角形的是( )A.∠A+∠B=∠C B.a:b:c=1:1:2C.(b+c)(b﹣c)=a2 D.【分析】根据勾股定理的逆定理和三角形的内角和定理逐个判断即可.【解答】解:A、∠A+∠B=∠C,∠A+∠B+∠C=180°,∠C=90°,是直角三角形,不符合题意;B、设a=x,b=x,c=2x,x2+x2≠(2x)2,不是直角三角形,符合题意;C、(b+c)(b﹣c)=a2,b2﹣c2=a2,a2+c2=b2,是直角三角形,不符合题意;D、12+()2=()2,是直角三角形,不符合题意;故选:B.【点评】本题考查了勾股定理的逆定理和三角形的内角和定理,注意:①如果一个三角形的两边a、b的平方和等于第三边c的平方,那么这个三角形是直角三角形,②三角形的内角和等于180°.3.下列说法不一定成立的是( )A.若a>b,则a+c>b+c B.若a+c>b+c,则a>bC.若a>b,则ac2>bc2 D.若ac2>bc2,则a>b【分析】根据不等式的性质进行判断.【解答】解:A、在不等式a>b的两边同时加上c,不等式仍成立,即a+c>b+c,不符合题意;B、在不等式a+c>b+c的两边同时减去c,不等式仍成立,即a>b,不符合题意;C、当c=0时,若a>b,则不等式ac2>bc2不成立,符合题意;D、在不等式ac2>bc2的两边同时除以不为0的c2,该不等式仍成立,即a>b,不符合题意.故选:C.【点评】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.4.如图所示,在湖边取一个可以直接到达A、B两点的点O,连结OA、OB,分别在OA、OB上取中点C,D,连结CD,并测得CD=a,由此就知道了AB间的距离是( )A. B.2a C.a D.3a【分析】三角形的中位线等于第三边的一半,由此即可计算.【解答】解:∵C、D分别是OA和OB的中点,∴CD是△OAB的中位线,∴AB=2CD=2a.故选:B.【点评】本题考查三角形中位线定理,关键是掌握三角形的中位线等于第三边的一半.5.已知关于x的分式方程的解是非负数,则m的取值范围是( )A.m≤3 B.m≥3 C.m≤3且m≠﹣1 D.m≤2且m≠﹣1【分析】先解关于x的分式方程,求出x,再根据分式方程的解是非负数且分式的分母不能为0,列出关于m的不等式,解不等式即可.【解答】解:,﹣m﹣1=2(x﹣2),﹣m﹣1=2x﹣4,2x=4﹣1﹣m,2x=3﹣m,,∵关于x的分式方程的解是非负数,∴且,3﹣m≥0且3﹣m≠4,m≤3且m≠﹣1,故选:C.【点评】本题主要考查了解分式方程和一元一次不等式,解题关键是熟练掌握解分式方程和一元一次不等式的一般步骤.6.清明放假期间,小明准备打出租车去离家10千米的金沙遗址博物馆,学习古蜀国历史和考古知识,由于恰逢打车高峰期,他决定骑共享单车前往金沙遗址博物馆,结果比打出租车要多花30分钟,已知出租车的平均速度是骑共享单车的平均速度的2倍,若设骑共享单车的平均速度为x千米/时,则可列方程为( )A. B.C. D.【分析】设骑共享单车的平均速度为x千米/时,根据“骑共享单车前往金沙遗址博物馆,结果比打出租车要多花30分钟”列方程,即可得到结论.【解答】解:30分钟小时,根据题意,则可列方程为:,故选:C.【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.7.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是( )A.2.5 B. C. D.2【分析】连接AC、CF,根据正方形性质求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.【解答】解:如图,连接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF2,∵H是AF的中点,∴CHAF2.故选:B.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,正方形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.8.如图,△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为( )A. B.1 C. D.7【分析】由等腰三角形的判定方法可知△AGC是等腰三角形,所以F为GC中点,再由已知条件可得EF为△CBG的中位线,利用中位线的性质即可求出线段EF的长.【解答】解:∵AD是△ABC角平分线,CG⊥AD于F,∴△AGC是等腰三角形,∴AG=AC=3,GF=CF,∵AB=4,AC=3,∴BG=1,∵AE是△ABC中线,∴BE=CE,∴EF为△CBG的中位线,∴EFBG,故选:A.【点评】本题考查了等腰三角形的判定和性质、三角形的中位线性质定理:三角形的中位线平行于第三边,并且等于第三边的一半.9.如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为( )A. B.2 C. D.10﹣5【分析】延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE﹣BG=2、HE=CH﹣CE=2、∠HEG=90°,由勾股定理可得GH的长.【解答】解:如图,延长BG交CH于点E,∵四边形ABCD是正方形,∴∠ABC=90°,AB=CD=10,∵AG=8,BG=6,∴AG2+BG2=AB2,∴∠AGB=90°,∴∠1+∠2=90°,又∵∠2+∠3=90°,∴∠1=∠3,同理:∠4=∠6,在△ABG和△CDH中,,∴△ABG≌△CDH(SSS),∴∠1=∠5,∠2=∠6,∴∠2=∠4,在△ABG和△BCE中,,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE﹣BG=8﹣6=2,同理可得HE=2,在Rt△GHE中,GH2,故选:B.【点评】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为等腰直角三角形是解题的关键.10.如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为( )A. B. C. D.【分析】依据矩形的性质即可得到△AOD的面积为12,再根据S△AOD=S△AOE+S△DOE,即可得到OE+EF的值.【解答】解:∵AB=6,BC=8,∴矩形ABCD的面积为48,AC10,∴AO=DOAC=5,∵对角线AC,BD交于点O,∴△AOD的面积为12,∵EO⊥AO,EF⊥DO,∴S△AOD=S△AOE+S△DOE,即12AO×EODO×EF,∴125×EO5×EF,∴5(EO+EF)=24,∴EO+EF,故选:C.【点评】本题主要考查了矩形的性质,解题时注意:矩形的四个角都是直角;矩形的对角线相等且互相平分.11.如图,△ABC的周长为26,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=10,则PQ的长为( )A. B. C.3 D.4【分析】首先判断△BAE、△CAD是等腰三角形,从而得出BA=BE,CA=CD,由△ABC的周长为26,及BC=10,可得DE=6,利用中位线定理可求出PQ.【解答】解:∵BQ平分∠ABC,BQ⊥AE,∴∠QBA=∠QBE,∠BQA=∠BQE,BQ=BQ,∴△BQA≌△BQE,∴BA=BE,∴△BAE是等腰三角形,同理△CAD是等腰三角形,∴点Q是AE中点,点P是AD中点(三线合一),∴PQ是△ADE的中位线,∵BE+CD=AB+AC=26﹣BC=26﹣10=16,∴DE=BE+CD﹣BC=6,∴PQDE=3.故选:C.【点评】本题考查了三角形的中位线定理,解答本题的关键是判断出△BAE、△CAD是等腰三角形,利用等腰三角形的性质确定PQ是△ADE的中位线.12.将五个边长都为2cm的正方形按如图所示摆放,点A、B、C、D分别是四个正方形的中心(对角线的交点),则图中四块阴影面积的和为( )A.2cm2 B.4cm2 C.6cm2 D.8cm2【分析】连接AP、AN,点A是正方形的对角线的交点,则AP=AN,∠APF=∠ANE=45°,易得PAF≌△NAE,进而可得四边形AENF的面积等于△NAP的面积,同理可得答案.【解答】解:如图,连接AP,AN,点A是正方形的对角线的交点.则AP=AN,∠APF=∠ANE=45°,∵∠PAF+∠FAN=∠FAN+∠NAE=90°,∴∠PAF=∠NAE,∴△PAF≌△NAE,∴四边形AENF的面积等于△NAP的面积,而△NAP的面积是正方形的面积的,而正方形的面积为4,∴四边形AENF的面积为1cm2,四块阴影面积的和为4cm2.故选:B.【点评】本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.13.如图, ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,ABBC,连接OE.下列结论:①∠CAD=30°;②S ABCD=AB AC;③OB=AB;④OEBC,成立的个数有( )A.1个 B.2个 C.3个 D.4个【分析】由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据AE平分∠BAD,得到∠BAE=∠EAD=60°推出△ABE是等边三角形,由于ABBC,得到AEBC,得到△ABC是直角三角形,于是得到∠CAD=30°,故①正确;由于AC⊥AB,得到S ABCD=AB AC,故②正确,根据ABBC,OBBD,且BD>BC,得到AB≠OB,故③错误;根据三角形的中位线定理得到OEAB,于是得到OEBC,故④正确.【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵AE平分∠BAD,∴∠BAE=∠EAD=60°∴△ABE是等边三角形,∴AE=AB=BE,∵ABBC,∴AEBC,∴∠BAC=90°,∴∠CAD=30°,故①正确;∵AC⊥AB,∴S ABCD=AB AC,故②正确,∵ABBC,OBBD,∵BD>BC,∴AB≠OB,故③错误;∵CE=BE,CO=OA,∴OEAB,∴OEBC,故④正确.故选:C.【点评】本题考查了平行四边形的性质,等边三角形的判定和性质,直角三角形的性质,平行四边形的面积公式,熟练掌握性质定理和判定定理是解题的关键.14.如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+3;⑤S△AOC+S△AOB=6.其中正确的结论是( )A.①②③⑤ B.①②③④ C.①②③④⑤ D.①②③【分析】证明△BO′A≌△BOC,又∠OBO′=60°,所以△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;由△OBO′是等边三角形,可知结论②正确;在△AOO′中,三边长为3,4,5,这是一组勾股数,故△AOO′是直角三角形;进而求得∠AOB=150°,故结论③正确;S四边形AOBO′=S△AOO′+S△OBO′=6+4,故结论④错误;如图②,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,点O旋转至O″点.利用旋转变换构造等边三角形与直角三角形,将S△AOC+S△AOB转化为S△COO″+S△AOO″,计算可得结论⑤正确.【解答】解:由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,又∵OB=O′B,AB=BC,∴△BO′A≌△BOC,又∵∠OBO′=60°,∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;如图①,连接OO′,∵OB=O′B,且∠OBO′=60°,∴△OBO′是等边三角形,∴OO′=OB=4.故结论②正确;∵△BO′A≌△BOC,∴O′A=5.在△AOO′中,三边长为3,4,5,这是一组勾股数,∴△AOO′是直角三角形,∠AOO′=90°,∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,故结论③正确;S四边形AOBO′=S△AOO′+S△OBO′3×442=6+4,故结论④错误;如图②所示,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,点O旋转至O″点.易知△AOO″是边长为3的等边三角形,△COO″是边长为3、4、5的直角三角形,则S△AOC+S△AOB=S四边形AOCO″=S△COO″+S△AOO″3×432=6,故结论⑤正确.综上所述,正确的结论为:①②③⑤.故选:A.【点评】本题考查了旋转变换中等边三角形,直角三角形的性质.利用勾股定理的逆定理,判定勾股数3、4、5所构成的三角形是直角三角形,这是本题的要点.在判定结论⑤时,将△AOB向不同方向旋转,体现了结论①﹣结论④解题思路的拓展应用.二.填空题(共6小题)15.若不等式(a﹣3)x>1的解集为x,则a的取值范围是 a<3 .【分析】根据不等式的性质可得a﹣3<0,由此求出a的取值范围.【解答】解:∵(a﹣3)x>1的解集为x,∴不等式两边同时除以(a﹣3)时不等号的方向改变,∴a﹣3<0,∴a<3.故答案为:a<3.【点评】本题考查了不等式的性质:在不等式的两边同时乘以或除以同一个负数不等号的方向改变.本题解不等号时方向改变,所以a﹣3小于0.16.若2,则 .【分析】由2,得x+y=2xy,整体代入所求的式子化简即可.【解答】解:由2,得x+y=2xy则.故答案为.【点评】解题关键是用到了整体代入的思想.17.若不等式组无解,则m的取值范围是 m≤2 .【分析】按照解一元一次不等式组的步骤进行计算,即可解答.【解答】解:,解不等式2x﹣4>0,得x>2,∴不等式组的解集为2<x<m,∵不等式组无解,∴m≤2,故答案为:m≤2.【点评】本题考查了解一元一次不等式组,不等式的解集,准确熟练地进行计算是解题的关键.18.若关于x的分式方程无解,则m= ﹣4或6或1 .【分析】该分式方程无解的情况有两种:(1)原方程存在增根;(2)原方程约去分母后,整式方程无解.【解答】解:(1)x=﹣2为原方程的增根,此时有2(x+2)+mx=3(x﹣2),即2×(﹣2+2)﹣2m=3×(﹣2﹣2),解得m=6.(2)x=2为原方程的增根,此时有2(x+2)+mx=3(x﹣2),即2×(2+2)+2m=3×(2﹣2),解得m=﹣4.(3)方程两边都乘(x+2)(x﹣2),得2(x+2)+mx=3(x﹣2),化简得:(m﹣1)x=﹣10.当m=1时,整式方程无解.综上所述,当m=﹣4或m=6或m=1时,原方程无解.【点评】分式方程无解,既要考虑分式方程有增根的情形,又要考虑整式方程无解的情形.19.若不等式组恰有两个整数解.则实数a的取值范围是 a≤1 .【分析】求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知不等式组有两个整数解得出不等式组1<2a≤2,求出不等式组的解集即可.【解答】解:,∵解不等式①得:x,解不等式②得:x<2a,∴不等式组的解集为x<2a,∵不等式组有两个整数解,∴1<2a≤2,∴a≤1,故答案为:a≤1.【点评】本题考查了解一元一次不等式(组),不等式组的整数解,关键是能根据不等式组的解集得出关于a的不等式组,题目具有一定的代表性,是一道比较好的题目.20.化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99= (a+1)100 .【分析】原式提取公因式,计算即可得到结果.【解答】解:原式=(a+1)[1+a+a(a+1)+a(a+1)2+…+a(a+1)98]=(a+1)2[1+a+a(a+1)+a(a+1)2+…+a(a+1)97]=(a+1)3[1+a+a(a+1)+a(a+1)2+…+a(a+1)96]=…=(a+1)100.故答案为:(a+1)100.【点评】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.三.解答题(共20小题)21.解不等式组:.【分析】分别求出每个不等式的解集,再依据口诀“同大取大;同小取小;大小小大中间找;大大小小找不到”确定不等式组的解集.【解答】解:由﹣3(x﹣2)>4﹣x得:x<1,由x﹣1得x<4,则不等式组的解集为x<1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.先化简再求值:,其中.【分析】先根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【解答】解:原式=a﹣2,当a=2时,原式=22.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.23.分解因式:(1)2x2y﹣8xy+8y;(2)a2(x﹣y)﹣9b2(x﹣y);(3)9(3m+2n)2﹣4(m﹣2n)2;(4)(y2﹣1)2+6(1﹣y2)+9.【分析】(1)首先提取公因式2y,进而利用完全平方公式分解因式即可;(2)首先提取公因式(x﹣y),进而利用平方差公式分解因式得出即可;(3)直接利用平方差公式分解因式得出即可;(4)直接利用完全平方公式分解因式进而利用平方差公式分解因式.【解答】解:(1)2x2y﹣8xy+8y=2y(x2﹣4x+4)=2y(x﹣2)2;(2)a2(x﹣y)﹣9b2(x﹣y)=(x﹣y)(a2﹣9b2)=(x﹣y)(a+3b)(a﹣3b);(3)9(3m+2n)2﹣4(m﹣2n)2=[3(3m+2n)﹣2(m﹣2n)][3(3m+2n)+2(m﹣2n)]=(7m+10n)(11m+2n);(4)(y2﹣1)2+6(1﹣y2)+9=(y2﹣1﹣3)2=(y+2)2(y﹣2)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.24.已知,求的值.【分析】我们可将前面式子变式为x2+1=3x,再将后面式子的分母变式为的形式从而求出值.【解答】解:将两边同时乘以x,得x2+1=3x,.【点评】本题考查的是分式的值,解题关键是用到了整体代入的思想.25.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?【分析】(1)关系式为:饮用水件数+蔬菜件数=320;(2)关系式为:40×甲货车辆数+20×乙货车辆数≥200;10×甲货车辆数+20×乙货车辆数≥120;(3)分别计算出相应方案,比较即可.【解答】解:(1)设饮用水有x件,则蔬菜有(x﹣80)件.x+(x﹣80)=320,解这个方程,得x=200.∴x﹣80=120.答:饮用水和蔬菜分别为200件和120件;(2)设租用甲种货车m辆,则租用乙种货车(8﹣m)辆.得:,解这个不等式组,得2≤m≤4.∵m为正整数,∴m=2或3或4,安排甲、乙两种货车时有3种方案.设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆;(3)3种方案的运费分别为:①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元);∴方案①运费最少,最少运费是2960元.答:运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元.【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的关系式.26.如图,点O是等边△ABC内一点,D是△ABC外的一点,∠AOB=110°,∠BOC=α,△BOC≌△ADC,∠OCD=60°,连接OD.(1)求证:△OCD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形.【分析】(1)根据有一个角是60°的等腰三角形是等边三角形可得证;(2)根据全等易得∠ADC=∠BOC=α=150°,结合(1)中的结论可得∠ADO为90°,那么可得所求三角形的形状;(3)根据题中所给的全等及∠AOB的度数可得∠AOD的度数,根据等腰三角形的两底角相等分类探讨即可.【解答】证明:(1)∵△BOC≌△ADC,∴OC=DC,∵∠OCD=60°,∴△OCD是等边三角形.解:(2)△AOD是直角三角形.理由如下:∵△OCD是等边三角形,∴∠ODC=60°,∵△BOC≌△ADC,α=150°,∴∠ADC=∠BOC=α=150°,∴∠ADO=∠ADC﹣∠ODC=150°﹣60°=90°,∴△AOD是直角三角形.(3)∵△OCD是等边三角形,∴∠COD=∠ODC=60°.∵∠AOB=110°,∠ADC=∠BOC=α,∴∠AOD=360°﹣∠AOB﹣∠BOC﹣∠COD=360°﹣110°﹣α﹣60°=190°﹣α,∠ADO=∠ADC﹣∠ODC=α﹣60°,∴∠OAD=180°﹣∠AOD﹣∠ADO=180°﹣(190°﹣α)﹣(α﹣60°)=50°.①当∠AOD=∠ADO时,190°﹣α=α﹣60°,∴α=125°.②当∠AOD=∠OAD时,190°﹣α=50°,∴α=140°.③当∠ADO=∠OAD时,α﹣60°=50°,∴α=110°.综上所述:当α=110°或125°或140°时,△AOD是等腰三角形.【点评】综合考查了全等三角形的性质及等腰三角形的判定;注意应分类探讨三角形为等腰三角形的各种情况.27.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CFBC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长.【分析】(1)直接利用三角形中位线定理得出DEBC,进而得出DE=FC;(2)利用平行四边形的判定与性质得出DC=EF,进而利用等边三角形的性质以及勾股定理得出EF的长.【解答】(1)证明:∵D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DEBC,∵延长BC至点F,使CFBC,∴DE=FC;(2)解:∵DEFC,∴四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF.【点评】此题主要考查了等边三角形的性质以及平行四边形的判定与性质和三角形中位线定理等知识,得出DEBC是解题关键.28.如图,在△ABC中,过点C作CD∥AB,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若GB=3,BC=6,BF,求AB的长.【分析】(1)由E是AC的中点知AE=CE,由AB∥CD知∠AFE=∠CDE,据此根据“AAS”即可证△AEF≌△CED,从而得AF=CD,结合AB∥CD即可得证;(2)证△GBF∽△GCD得,据此求得CD,由AF=CD及AB=AF+BF可得答案.【解答】解:(1)∵E是AC的中点,∴AE=CE,∵AB∥CD,∴∠AFE=∠CDE,在△AEF和△CED中,∵,∴△AEF≌△CED(AAS),∴AF=CD,又AB∥CD,即AF∥CD,∴四边形AFCD是平行四边形;(2)∵AB∥CD,∴△GBF∽△GCD,∴,即,解得:CD,∵四边形AFCD是平行四边形,∴AF=CD,∴AB=AF+BF6.【点评】本题主要考查平行四边形的判定与性质,解题的关键是掌握全等三角形、相似三角形及平行四边形的判定与性质.29.如图,点C是线段AB上除点A、B外的任意一点,分别以AC、BC为边在线段AB的同旁作等边△ACD和等边△BCE,连接AE交DC于M,连接BD交CE于N,连接MN.(1)求证:AE=BD;(2)求证:MN∥AB.【分析】(1))先由△ACD和△BCE是等边三角形,可知AC=DC,CE=CB,∠DCA=60°,∠ECB=60°,故可得出∠DCA+∠DCE=∠ECB+∠DCE,∠ACE=∠DCB,根据SAS定理可知△ACE≌△DCB,由全等三角形的性质即可得出结论;(2)由(1)中△ACE≌△DCB,可知∠CAM=∠CDN,再根据∠ACD=∠ECB=60°,A、C、B三点共线可得出∠DCN=60°,由全等三角形的判定定理可知,△ACM≌△DCN,故MC=NC,再根据∠MCN=60°可知△MCN为等边三角形,故∠NMC=∠DCN=60°故可得出结论.【解答】证明:(1)∵△ACD和△BCE是等边三角形,∴AC=DC,CE=CB,∠DCA=60°,∠ECB=60°,∵∠DCA=∠ECB=60°,∴∠DCA+∠DCE=∠ECB+∠DCE,∠ACE=∠DCB,在△ACE与△DCB中,∵,∴△ACE≌△DCB,∴AE=BD;(2)∵由(1)得,△ACE≌△DCB,∴∠CAM=∠CDN,∵∠ACD=∠ECB=60°,而A、C、B三点共线,∴∠DCN=60°,在△ACM与△DCN中,∵,∴△ACM≌△DCN(ASA),∴MC=NC,∵∠MCN=60°,∴△MCN为等边三角形,∴∠NMC=∠DCN=60°,∴∠NMC=∠DCA,∴MN∥AB.【点评】本题考查的是等边三角形的判定与性质及全等三角形的判定与性质,根据题意判断出△ACE≌△DCB,△ACM≌△DCN是解答此题的关键.30.如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.【分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥AB,DE∥AC,再根据平行四边形的定义证明即可;(2)根据平行四边形的对角相等可得∠DEF=∠BAC,根据直角三角形斜边上的中线等于斜边的一半可得DH=AD,FH=AF,再根据等边对等角可得∠DAH=∠DHA,∠FAH=∠FHA,然后求出∠DHF=∠BAC,等量代换即可得到∠DHF=∠DEF.【解答】证明:(1)∵点D,E,F分别是AB,BC,CA的中点,∴DE、EF都是△ABC的中位线,∴EF∥AB,DE∥AC,∴四边形ADEF是平行四边形;(2)∵四边形ADEF是平行四边形,∴∠DEF=∠BAC,∵D,F分别是AB,CA的中点,AH是边BC上的高,∴DH=AD,FH=AF,∴∠DAH=∠DHA,∠FAH=∠FHA,∵∠DAH+∠FAH=∠BAC,∠DHA+∠FHA=∠DHF,∴∠DHF=∠BAC,∴∠DHF=∠DEF.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等腰三角形的性质,直角三角形斜边上的中线等于斜边的一半的性质,平行四边形的判定与性质,熟记各性质并准确识图是解题的关键.31.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.【分析】(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;(3)求出∠CDB=90°,再根据正方形的判定推出即可.【解答】(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD(直角三角形斜边上的中线等于斜边的一半),∴四边形BECD是菱形;(3)当∠A=45°时,四边形BECD是正方形,理由是:解:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴菱形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.【点评】本题考查了正方形的判定、平行四边形的性质和判定,菱形的判定,直角三角形的性质的应用,主要考查学生运用定理进行推理的能力.32.如图,△ABC为等边三角形,D、F分别为BC、AB上的点,且CD=BF,以AD为边作等边△ADE.(1)求证:△ACD≌△CBF;(2)点D在线段BC上何处时,四边形CDEF是平行四边形且∠DEF=30°.【分析】(1)在△ACD和△CBF中,根据已知条件有两边和一夹角对应相等,可根据边角边来证明全等.(2)当∠DEF=30°,即为∠DCF=30°,在△BCF中,∠CFB=90°,即F为AB的中点,又因为△ACD≌△CBF,所以点D为BC的中点.【解答】证明:(1)由△ABC为等边三角形,AC=BC,∠FBC=∠DCA,在△ACD和△CBF中,,所以△ACD≌△CBF(SAS);(2)当D在线段BC上的中点时,四边形CDEF为平行四边形,且角DEF=30度按上述条件作图,连接BE,在△AEB和△ADC中,AB=AC,∠EAB+∠BAD=∠DAC+∠BAD=60°,即∠EAB=∠DAC,AE=AD,∴△AEB≌△ADC(SAS),又∵△ACD≌△CBF,∴△AEB≌△ADC≌△CFB,∴EB=FB,∠EBA=∠ABC=60°,∴△EFB为正三角形,∴EF=FB=CD,∠EFB=60°,又∵∠ABC=60°,∴∠EFB=∠ABC=60°,∴EF∥BC,而CD在BC上,∴EF平行且相等于CD,∴四边形CDEF为平行四边形,∵D在线段BC上的中点,∴F在线段AB上的中点,∴∠FCD60°=30°则∠DEF=∠FCD=30°.【点评】本题考查了平行四边形的判定和三角形全等的知识,三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.33.如图,点M,N分别在正方形ABCD的边BC,CD上,且∠MAN=45°.把△ADN绕点A顺时针旋转90°得到△ABE.(1)求证:△AEM≌△ANM.(2)若BM=3,DN=2,求正方形ABCD的边长.【分析】(1)想办法证明∠MAE=∠MAN=45°,根据SAS证明三角形全等即可.(2)设CD=BC=x,则CM=x﹣3,CN=x﹣2,在Rt△MCN中,利用勾股定理构建方程即可解决问题.【解答】(1)证明:由旋转的性质得,△ADN≌△ABE,∴∠DAN=∠BAE,AE=AN,∠D=∠ABE=90°,∴∠ABC+∠ABE=180°,∴点E,点B,点C三点共线,∵∠DAB=90°,∠MAN=45°,∴∠MAE=∠BAE+∠BAM=∠DAN+∠BAM=45°,∴∠MAE=∠MAN,∵MA=MA,∴△AEM≌△ANM(SAS).(2)解:设CD=BC=x,则CM=x﹣3,CN=x﹣2,∵△AEM≌△ANM,∴EM=MN,∵BE=DN,∴MN=BM+DN=5,∵∠C=90°,∴MN2=CM2+CN2,∴25=(x﹣2)2+(x﹣3)2,解得,x=6或﹣1(舍弃),∴正方形ABCD的边长为6.【点评】本题考查旋转变换,正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数构建方程解决问题,属于中考常考题型.34.如图,在△ABC中,∠BAC=90°,∠B=45°,BC=10,过点A作AD∥BC,且点D在点A的右侧.点P从点A出发沿射线AD方向以每秒1个单位的速度运动,同时点Q从点C出发沿射线CB方向以每秒2个单位的速度运动,在线段QC上取点E,使得QE=2,连接PE,设点P的运动时间为t秒.(1)若PE⊥BC,求BQ的长;(2)请问是否存在t的值,使以A,B,E,P为顶点的四边形为平行四边形?若存在,求出t的值;若不存在,请说明理由.【分析】(1)作AM⊥BC于M,由已知条件得出AB=AC,由等腰三角形的性质得出BM=CM,由直角三角形斜边上的中线性质得出AMBC=5,证出△APN和△CEN是等腰直角三角形,得出PN=AP=t,CE=NE=5﹣t,由CE=CQ﹣QE=2t﹣2得出方程,解方程即可;(2)由平行四边形的判定得出AP=BE,得出方程,解方程即可.【解答】解:(1)作AM⊥BC于M,设AC交PE于N.如图所示:∵∠BAC=90°,∠B=45°,∴∠C=45°=∠B,∴AB=AC,∴BM=CM,∴AMBC=5,∵AD∥BC,∴∠PAN=∠C=45°,∵PE⊥BC,∴PE=AM=5,PE⊥AD,∴△APN和△CEN是等腰直角三角形,∴PN=AP=t,CE=NE=5﹣t,∵CE=CQ﹣QE=2t﹣2,∴5﹣t=2t﹣2,解得:t,所以BQ=BC﹣CQ=10﹣2;(2)存在,t=4或12;理由如下:若以A,B,E,P为顶点的四边形为平行四边形,则AP=BE,∴t=10﹣2t+2或t=2t﹣2﹣10解得:t=4或12∴存在t的值,使以A,B,E,P为顶点的四边形为平行四边形,t=4或12.【点评】本题考查了平行四边形的判定、等腰直角三角形的判定与性质、等腰三角形的性质等知识;根据题意得出t的方程是解决问题的突破口.35.如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,点P从点A出发以2cm/s的速度沿A→D→C运动,点P从点A出发的同时点Q从点C出发,以1cm/s的速度向点B运动,当点P到达点C时,点Q也停止运动.设点P,Q运动的时间为t秒.(1)从运动开始,当t取何值时,PQ∥CD?(2)从运动开始,当t取何值时,△PQC为直角三角形?【分析】(1)已知AD∥BC,添加PD=CQ即可判断以PQDC为顶点的四边形是平行四边形.(2)点P处可能为直角,点Q处也可能是直角,而后求解即可.【解答】解:(1)当PQ∥CD时,四边形PDCB是平行四边形,此时PD=QC,∴12﹣2t=t,∴t=4.∴当t=4时,四边形PQDC是平行四边形.(2)过D点,DF⊥BC于F,∴DF=AB=8.FC=BC﹣AD=18﹣12=6,CD=10,①当PQ⊥BC,则BQ+CQ=18.即:2t+t=18,∴t=6;②当QP⊥PC,此时P一定在DC上,CP1=10+12﹣2t=22﹣2t,CQ2=t,易知,△CDF∽△CQ2P1,∴,解得:t,③情形:当PC⊥BC时,因∠DCB<90°,此种情形不存在.∴当t=6或时,△PQC是直角三角形.【点评】此题主要考查了一组对边平行且相等的四边形是平行四边形以及圆与圆的位置关系等知识,注意分情况讨论和常见知识的应用.36.观察探究,完成证明和填空.如图,四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,顺次连接E、F、G、H,得到的四边形EFGH叫中点四边形.(1)求证:四边形EFGH是平行四边形;(2)如图,当四边形ABCD变成等腰梯形时,它的中点四边形是菱形,请你探究并填空:当四边形ABCD变成平行四边形时,它的中点四边形是 平行四边形 ;当四边形ABCD变成矩形时,它的中点四边形是 菱形 ;当四边形ABCD变成菱形时,它的中点四边形是 矩形 ;当四边形ABCD变成正方形时,它的中点四边形是 正方形 ;(3)根据以上观察探究,请你总结中点四边形的形状由原四边形的什么决定的?【分析】(1)连接BD.利用三角形中位线定理推出所得四边形对边平行且相等,故为平行四边形;(2)连接AC、BD.根据三角形的中位线定理,可以得到所得四边形的两组对边分别和原四边形的对角线平行,且分别等于原四边形的对角线的一半.若顺次连接对角线相等的四边形各边中点,则所得的四边形的四条边都相等,故所得四边形为菱形;若顺次连接对角线互相垂直的四边形各边中点,则所得的四边形的四个角都是直角,故所得四边形为矩形;若顺次连接对角线相等且互相垂直的四边形各边中点,则综合上述两种情况,故所得的四边形为正方形;(3)由以上法则可知,中点四边形的形状是由原四边形的对角线的关系决定的.【解答】(1)证明:连接BD.∵E、H分别是AB、AD的中点,∴EH是△ABD的中位线.∴EHBD,EH∥BD.同理得FGBD,FG∥BD.∴EH=FG,EH∥FG.∴四边形EFGH是平行四边形.(2)填空依次为平行四边形,菱形,矩形,正方形;(3)中点四边形的形状是由原四边形的对角线的关系决定的.故答案为平行四边形、菱形、矩形、正方形.【点评】此题综合运用了三角形的中位线定理和特殊四边形的判定定理.熟记结论:顺次连接四边形各边中点所得四边形是平行四边形;顺次连接对角线相等的四边形各边中点所得四边形是菱形;顺次连接对角线垂直的四边形各边中点所得四边形是矩形;顺次连接对角线相等且互相垂直的四边形各边中点所得四边形是正方形.37.如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为 垂直 ,数量关系为 相等 .②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?(2)如果AB≠AC,∠BAC≠90°点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?并说明理由.【分析】(1)当点D在BC的延长线上时①的结论仍成立.由正方形ADEF的性质可推出△DAB≌△FAC,所以CF=BD,∠ACF=∠ABD.结合∠BAC=90°,AB=AC,得到∠BCF=∠ACB+∠ACF=90度.即CF⊥BD.(2)当∠ACB=45°时,过点A作AG⊥AC交CB或CB的延长线于点G,则∠GAC=90°,可推出∠ACB=∠AGC,所以AC=AG,由(1)①可知CF⊥BD.【解答】解:(1)①CF⊥BD,CF=BD …(2分)故答案为:垂直、相等.②成立,理由如下:…(3分)∵∠FAD=∠BAC=90°∴∠BAD=∠CAF在△BAD与△CAF中,∵∴△BAD≌△CAF(SAS)(5分)∴CF=BD,∠ACF=∠ACB=45°,∴∠BCF=90°∴CF⊥BD …(7分)(2)当∠ACB=45°时可得CF⊥BC,理由如下:…(8分)过点A作AC的垂线与CB所在直线交于G …(9分)则∵∠ACB=45°∴AG=AC,∠AGC=∠ACG=45°∵AG=AC,AD=AF,∵∠GAD=∠GAC﹣∠DAC=90°﹣∠DAC,∠FAC=∠FAD﹣∠DAC=90°﹣∠DAC,∴∠GAD=∠FAC,∴△GAD≌△CAF(SAS) …(10分)∴∠ACF=∠AGD=45°∴∠GCF=∠GCA+∠ACF=90°∴CF⊥BC …(12分)【点评】本题考查三角形全等的判定和直角三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.38.如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.【分析】(1)因为点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,所以AP=BQ.AB=AC,∠B=∠CAP=60°,因而运用边角边定理可知△ABQ≌△CAP.再用全等三角形的性质定理及三角形的角间关系、三角形的外角定理,可求得∠CMQ的度数.(2)设时间为t,则AP=BQ=t,PB=4﹣t.分别就①当∠PQB=90°时;②当∠BPQ=90°时利用直角三角形的性质定理求得t的值.(3)首先利用边角边定理证得△PBC≌△QCA,再利用全等三角形的性质定理得到∠BPC=∠MQC.再运用三角形角间的关系求得∠CMQ的度数.【解答】解:(1)∠CMQ=60°不变.∵等边三角形中,AB=AC,∠B=∠CAP=60°又由条件得AP=BQ,在△ABQ和△CAP中,,∴△ABQ≌△CAP(SAS),∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°.(2)设时间为t,则AP=BQ=t,PB=4﹣t①当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,得4﹣t=2t,t;②当∠BPQ=90°时,∵∠B=60°,∴BQ=2BP,得t=2(4﹣t),t;∴当第秒或第秒时,△PBQ为直角三角形.(3)∠CMQ=120°不变.∵在等边三角形中,BC=AC,∠ABC=∠ACB=60°∴∠PBC=∠ACQ=120°,又由条件得BP=CQ,在△PBC和△QCA中,,∴△PBC≌△QCA(SAS)∴∠BPC=∠MQC又∵∠PCB=∠MCQ,∴∠CMQ=∠PBC=180°﹣60°=120°【点评】此题是一个综合性很强的题目.本题考查等边三角形的性质、全等三角形的判定与性质、直角三角形的性质.难度很大,有利于培养同学们钻研和探索问题的精神.39.如图,在四边形ABCD中,AD=6,BC=16,AD∥BC,∠B=60°,E是BC的中点,点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也停止运动,设运动时间为t s.(1)PD= 6﹣t ;CQ= 2t ;QE= 8﹣2t或2t﹣8; (用含t的代数式表示);(2)当t为何值时,以P,Q,E,D为顶点的四边形是平行四边形?【分析】(1)AD=6,BC=16,点E是BC的中点,得PD=6﹣AP,,则QE=8﹣CQ或QE=CQ﹣8,而AP=t,CQ=2t,则PD=6﹣t;若点Q与点E重合,则2t=8,求得t=4;若点P与点D重合,则t=6,所以当0<t<4时,则QE=8﹣2t,当4<t<6时,则QE=2t﹣8,于是得到问题的答案;(2)由AD∥BC,可知点P,Q,E,D为顶点的四边形是平行四边形时,PD=EQ,再分两种情况讨论,一是当Q运动到E和B之间,则得:2t﹣8=6﹣t;二是当Q运动到E和C之间,则得:8﹣2t=6﹣t,解方程求出相应的t值即可.【解答】解:(1)∵AD=6,BC=16,点E是BC的中点,点P在AD上,点Q在BC上,∴PD=6﹣AP,,∴QE=8﹣CQ或QE=CQ﹣8,∵点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动,点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动.设运动时间为t s,∴AP=t,CQ=2t,∴PD=6﹣t;若点Q与点E重合,则2t=8,解得t=4;若点P与点D重合,则t=6,当0≤t≤4时,则QE=8﹣2t,当4<t≤6时,则QE=2t﹣8,故答案为:6﹣t;2t;8﹣2t或2t﹣8;(2)∵AD∥BC,∴点P,Q,E,D为顶点的四边形是平行四边形时,PD=EQ,∵E是BC的中点,∴,分两种情况:①当Q运动到E和B之间,则得:2t﹣8=6﹣t,解得:,②当Q运动到E和C之间,则得:8﹣2t=6﹣t,解得:t=2,综上所述,当运动时间t为2秒或秒时,以点P,Q,E,D为顶点的四边形是平行四边形.【点评】此题考查平行四边形的判定,列代数式,正确地用代数式表示线段的长度是解题的关键.40.在等边△ABC的两边AB、AC所在直线上分别有两点M、N,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系及△AMN的周长Q与等边△ABC的周长L的关系.(1)如图1,当点M、N在边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是 BM+NC=MN ;此时 ;(2)如图2,点M、N在边AB、AC上,且当DM≠DN时,猜想(I)问的两个结论还成立吗?若成立请直接写出你的结论;若不成立请说明理由.(3)如图3,当M、N分别在边AB、CA的延长线上时,探索BM、NC、MN之间的数量关系如何?并给出证明.【分析】(1)由DM=DN,∠MDN=60°,可证得△MDN是等边三角形,又由△ABC是等边三角形,CD=BD,易证得Rt△BDM≌Rt△CDN,然后由直角三角形的性质,即可求得BM、NC、MN之间的数量关系 BM+NC=MN,此时 ;(2)在CN的延长线上截取CM1=BM,连接DM1.可证△DBM≌△DCM1,即可得DM=DM1,易证得∠CDN=∠MDN=60°,则可证得△MDN≌△M1DN,然后由全等三角形的性质,即可得结论仍然成立;(3)首先在CN上截取CM1=BM,连接DM1,可证△DBM≌△DCM1,即可得DM=DM1,然后证得∠CDN=∠MDN=60°,易证得△MDN≌△M1DN,则可得NC﹣BM=MN.【解答】解:(1)如图1,BM、NC、MN之间的数量关系 BM+NC=MN,此时 ,理由:∵DM=DN,∠MDN=60°,∴△MDN是等边三角形,∵△ABC是等边三角形,∴∠A=60°,∵BD=CD,∠BDC=120°,∴∠DBC=∠DCB=30°,∴∠MBD=∠NCD=90°,∵DM=DN,BD=CD,∴Rt△BDM≌Rt△CDN,∴∠BDM=∠CDN=30°,BM=CN,∴DM=2BM,DN=2CN,∴MN=2BM=2CN=BM+CN;∴AM=AN,∴△AMN是等边三角形,∵AB=AM+BM,∴AM:AB=2:3,∴;(2)猜想:结论仍然成立,证明:在NC的延长线上截取CM1=BM,连接DM1,∵∠MBD=∠M1CD=90°,BD=CD,∴△DBM≌△DCM1,∴DM=DM1,∠MBD=∠M1CD,M1C=BM,∵∠MDN=60°,∠BDC=120°,∴∠M1DN=∠MDN=60°,∴△MDN≌△M1DN,∴MN=M1N=M1C+NC=BM+NC,∴△AMN的周长为:AM+MN+AN=AM+BM+CN+AN=AB+AC,∴;(3)证明:在CN上截取CM1=BM,连接DM1,可证△DBM≌△DCM1,∴DM=DM1,可证∠M1DN=∠MDN=60°,∴△MDN≌△M1DN,∴MN=M1N,∴NC﹣BM=MN.【点评】此题考查了等边三角形,直角三角形,等腰三角形的性质以及全等三角形的判定与性质等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用与辅助线的作法.第1页(共1页) 展开更多...... 收起↑ 资源预览