资源简介 中小学教育资源及组卷应用平台北师大七年级下册数学期末考试高频易错及培优题型合集一.选择题(共20小题)1.下列乘法中,不能运用平方差公式进行运算的是( )A.(x+a)(x﹣a) B.(a+b)(﹣a﹣b)C.(﹣x﹣b)(x﹣b) D.(b+m)(m﹣b)2.下列说法不正确的是( )A.过任意一点可作已知直线的一条平行线B.同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.平行于同一直线的两直线平行3.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是( )A. B.C. D.4.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )A.150° B.180° C.210° D.225°5.如果x2﹣(m+1)x+1是完全平方式,则m的值为( )A.﹣1 B.1 C.1或﹣1 D.1或﹣36.如图,△ABC的周长是16,AD是BC边上的中线,AB=6,CD=3,则△ABD与△ACD 的周长之差为( )A.2 B.3 C.4 D.67.计算(a﹣b)(a+b)(a2+b2)(a4﹣b4)的结果是( )A.a8+2a4b4+b8 B.a8﹣2a4b4+b8C.a8+b8 D.a8﹣b88.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是( )A.42°、138° B.都是10°C.42°、138°或10°、10° D.以上都不对9.如图,AB∥EF,设∠C=90°,那么x、y和z的关系是( )A.y=x+z B.x+y﹣z=90°C.x+y+z=180° D.y+z﹣x=90°10.如图,在△ABC中,AD是高,AE是角平分线,若∠B=α,∠C=β,则∠DAE=( )A. B. C. D.11.如果x2+2mx+9是一个完全平方式,则m的值是( )A.3 B.±3 C.6 D.±612.已知a=8131,b=2741,c=961,则a,b,c的大小关系是( )A.a>b>c B.a>c>b C.a<b<c D.b>c>a13.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于( )A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:514.在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是( )A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早小时15.甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8km后遇到甲;④乙出发6分钟后追上甲.其中正确的有( )A.4个 B.3个 C.2个 D.1个16.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是( )A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)17.早上,小明从家里步行去学校,出发一段时间后,小明妈妈发现小明的作业本落在家里,便带上作业本骑车追赶,途中追上小明两人稍作停留,妈妈骑车返回,小明继续步行前往学校,两人同时到达.设小明在途中的时间为x,两人之间的距离为y,则下列选项中的图象能大致反映y与x之间关系的是( )A. B.C. D.18.如图所示,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.下列说法中正确的是( )A.B点表示此时快车到达乙地B.B﹣C﹣D段表示慢车先加速后减速最后到达甲地C.快车的速度为km/hD.慢车的速度为125km/h19.如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.下列结论:①AC=BD;②∠AMB=40°;③OM平分∠BOC;④MO平分∠BMC.其中正确的个数为( )A.4 B.3 C.2 D.120.如图,AB∥CD,F为AB上一点,FD∥EH,且FE平分∠AFG,过点F作FG⊥EH于点G,且∠AFG=2∠D,则下列结论:①∠D=30°;②2∠D+∠EHC=90°;③FD平分∠HFB;④FH平分∠GFD.其中正确结论的个数是( )A.1个 B.2个 C.3个 D.4个二.填空题(共9小题)21.已知am=3,an=2,则a2m﹣n的值为 .22.若(x﹣1)x+1=1,则x= .23.已知a、b为等腰△ABC的边长,且满足|a﹣5|+(b﹣11)2=0,则△ABC的周长是 .24.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为 .25.已知:如图所示,在△ABC中,点D,E,F分别为BC,AD,CE的中点,且S△ABC=4cm2,则阴影部分的面积为 cm2.26.如图,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC= .27.汽车开始行驶时,油箱中有油45升,如果每小时耗油6升,则油箱内余油量y(升)与行驶时间x(小时)的关系式为 .28.如图,A、B、C分别是线段A1B,B1C,C1A的中点,若△ABC的面积是1,那么△A1B1C1的面积 .29.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若∠EFG=49°,则∠2﹣∠1= .三.解答题(共28小题)30.计算:(1);(2)(2x﹣1)(3x+2)﹣3x(x﹣1).31.计算:(1)(a+3)2﹣(a+1)(a﹣1).(2)(x+y﹣3)(x+y+3).32.计算:(1)a2b3 (﹣15a2b2);(2)(3x+7y)(3x﹣7y);(3)(x﹣y)3(x﹣y)2(y﹣x);(4)(x+y+z)(x+y﹣z).33.先化简,再求值:(x﹣2)2﹣(2x+3)(2x﹣3)+3x(x+2),其中x.34.化简求值:(3a﹣2)(2a﹣1)﹣5a(a﹣2),其中a2+3a﹣2=0.35.已知代数式A=3x2﹣3xy+x+1,B=x2+xy+2y.(1)求A﹣3B;(2)若(x+1)2+|y﹣2|=0,求A﹣3B的值;(3)若A﹣3B的值与x的取值无关,求y的值.36.回答下列问题(1)填空:x2(x)2﹣ =(x)2+ (2)若a5,则a2 ;(3)若a2﹣3a+1=0,求a2的值.37.如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.求证:(1)AM⊥DM;(2)M为BC的中点.38.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.39.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.40.如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明理由.41.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.42.如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)说明BE=CF的理由;(2)如果AB=5,AC=3,求AE、BE的长.43.如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有 (请写序号,少选、错选均不得分).44.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.45.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于点E,点F在AC上,且BD=DF.(1)求证:CF=EB;(2)请你判断AE、AF与BE之间的数量关系,并说明理由.46.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?47.如图:AE⊥AB,AF⊥AC,AE=AB,AF=AC,(1)图中EC、BF有怎样的数量和位置关系?试证明你的结论.(2)连接AM,求证:MA平分∠EMF.48.如图,边长为a的大正方形中有一个边长为b的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示).(1)实验与操作:上述操作能验证的等式是: (请选择正确的选项).A.a2﹣ab=a(a﹣b)B.a2﹣2ab+b2=(a﹣b)2C.a2+ab=a(a+b)D.a2﹣b2=(a+b)(a﹣b)(2)应用与计算:请利用你从(1)选出的等式,完成下列各题:①根据以上等式简便计算:1022﹣982.②计算:.49.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是 米.(2)小明在书店停留了 分钟.(3)本次上学途中,小明一共行驶了 米.一共用了 分钟.(4)在整个上学的途中 (哪个时间段)小明骑车速度最快,最快的速度是 米/分.50.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=115°时,∠EDC= °,∠AED= °;(2)线段DC的长度为何值时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,求∠BDA的度数;若不可以,请说明理由.51.如图,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B出发,以2cm/秒的速度沿BC向点C运动,设点P的运动时间为t秒:(1)PC= cm.(用t的代数式表示)(2)当t为何值时,△ABP≌△DCP?(3)当点P从点B开始运动,同时,点Q从点C出发,以v cm/秒的速度沿CD向点D运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.52.(本题有3小题,第(1)小题为必答题,满分5分;第(2)、(3)小题为选答题,其中,第(2)小题满分3分,第(3)小题满分6分,请从中任选1小题作答,如两题都答,以第(2)小题评分.)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.53.如图,CD是经过∠BCA顶点C的一条直线,CA=CB,E、F分别是直线CD上两点,且∠BEC=∠CFA=α.(1)若直线CD经过∠BCA的内部,且E、F在射线CD上.①如图1,若∠BCA=90°,α=90°,则BE CF;②如图2,若0°<∠BCA<180°,请添加一个关于α与∠BCA关系的条件 ,使①中的结论仍然成立,并说明理由;(2)如图3,若直线CD经过∠BCA的外部,α=∠BCA,请提出关于EF,BE,AF三条线段数量关系的合理猜想,并简述理由.54.如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.55.如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE为一边作等边三角形DEF,连接CF.【问题解决】如图1,若点D在边BC上,求证:CE+CF=CD;【类比探究】如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.56.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连接EF,AG.求证:EF=FG.(2)如图2,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.57.(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF∠BAD.求证:EF=BE+FD;(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF∠BAD,(1)中的结论是否仍然成立?(3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.北师大七年级下册数学期末考试高频易错及培优题型合集参考答案与试题解析一.选择题(共20小题)题号 1 2 3 4 5 6 7 8 9 10 11答案 B A A B D A B C B A B题号 12 13 14 15 16 17 18 19 20答案 A C D B B B C B B一.选择题(共20小题)1.下列乘法中,不能运用平方差公式进行运算的是( )A.(x+a)(x﹣a) B.(a+b)(﹣a﹣b)C.(﹣x﹣b)(x﹣b) D.(b+m)(m﹣b)【分析】根据平方差公式的特点:两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数解答.【解答】解:A、C、D符合平方差公式的特点,故能运用平方差公式进行运算;B、两项都互为相反数,故不能运用平方差公式进行运算.故选:B.【点评】本题主要考查了平方差公式的结构.注意两个二项式中有一项完全相同,另一项互为相反数,并且相同的项和互为相反数的项必须同时具有.2.下列说法不正确的是( )A.过任意一点可作已知直线的一条平行线B.同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.平行于同一直线的两直线平行【分析】根据平行线的定义及平行公理进行判断.【解答】解:A中,若点在直线上,则不可以作出已知直线的平行线,而是与已知直线重合,错误.B、C、D正确.故选:A.【点评】本题主要考查平行线的定义及平行公理,熟练掌握公理、定理是解决本题的关键.3.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是( )A. B.C. D.【分析】根据三角形高线的定义:过三角形的顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答.【解答】解:为△ABC中BC边上的高的是A选项.故选:A.【点评】本题考查了三角形的角平分线、中线、高线,熟记高线的定义是解题的关键.4.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )A.150° B.180° C.210° D.225°【分析】根据SAS可证得△ABC≌△EDC,可得出∠BAC=∠DEC,继而可得出答案.【解答】解:在△ABC与△EDC中,,∴△ABC≌△EDC(SAS),∴∠BAC=∠1,∠1+∠2=180°.故选:B.【点评】本题考查全等图形的知识,比较简单,解答本题的关键是判断出△ABC≌△EDC.5.如果x2﹣(m+1)x+1是完全平方式,则m的值为( )A.﹣1 B.1 C.1或﹣1 D.1或﹣3【分析】本题考查完全平方公式的灵活应用,这里首末两项是x和1的平方,那么中间项为加上或减去x和1的乘积的2倍.【解答】解:∵x2﹣(m+1)x+1是完全平方式,∴﹣(m+1)x=±2×1 x,解得:m=1或m=﹣3.故选:D.【点评】本题主要考查完全平方公式,根据两平方项确定出这两个数,再根据乘积二倍项求解.6.如图,△ABC的周长是16,AD是BC边上的中线,AB=6,CD=3,则△ABD与△ACD 的周长之差为( )A.2 B.3 C.4 D.6【分析】根据三角形的中线,周长的计算得到BC=2CD=6,AC=4,根据△ABD的周长为AB+BD+AD,△ACD的周长为AC+CD+AD,得到△ABD与△ACD的周长之差为AB﹣AC,由此即可求解.【解答】解:△ABC的周长为16,∴AB+AC+BC=16,∵AD是BC边上的中线,∴BD=CD=3,则BC=6,∴AC=16﹣AB﹣BC=16﹣6﹣6=4,∵△ABD的周长为AB+BD+AD,△ACD的周长为AC+CD+AD,∴AB+BD+AD﹣(AC+CD+AD)=AB﹣AC=6﹣4=2,故选:A.【点评】本题考查了三角形的角平分线、中线和高,掌握三角形中线的定义是关键.7.计算(a﹣b)(a+b)(a2+b2)(a4﹣b4)的结果是( )A.a8+2a4b4+b8 B.a8﹣2a4b4+b8C.a8+b8 D.a8﹣b8【分析】这几个式子中,先把前两个式子相乘,这两个二项式中有一项完全相同,另一项互为相反数.相乘时符合平方差公式得到a2﹣b2,再把这个式子与a2+b2相乘又符合平方差公式,得到a4﹣b4,与最后一个因式相乘,可以用完全平方公式计算.【解答】解:(a﹣b)(a+b)(a2+b2)(a4﹣b4),=(a2﹣b2)(a2+b2)(a4﹣b4),=(a4﹣b4)2,=a8﹣2a4b4+b8.故选:B.【点评】本题主要考查了平方差公式的运用,本题难点在于连续运用平方差公式后再利用完全平方公式求解.8.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是( )A.42°、138° B.都是10°C.42°、138°或10°、10° D.以上都不对【分析】根据两边分别平行的两个角相等或互补列方程求解.【解答】解:如图1,∵AB∥EF,∴∠3=∠2,∵BC∥DE,∴∠3=∠1,∴∠1=∠2.如图2,∵AB∥EF,∴∠3+∠2=180°,∵BC∥DE,∴∠3=∠1,∴∠1+∠2=180°∴如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.设另一个角为x,则这一个角为4x﹣30°,(1)两个角相等,则x=4x﹣30°,解得x=10°,4x﹣30°=4×10°﹣30°=10°;(2)两个角互补,则x+(4x﹣30°)=180°,解得x=42°,4x﹣30°=4×42°﹣30°=138°.所以这两个角是42°、138°或10°、10°.故选:C.【点评】本题主要运用两边分别平行的两个角相等或互补,学生容易忽视互补的情况而导致出错.9.如图,AB∥EF,设∠C=90°,那么x、y和z的关系是( )A.y=x+z B.x+y﹣z=90°C.x+y+z=180° D.y+z﹣x=90°【分析】过C作CM∥AB,延长CD交EF于N,根据三角形外角性质求出∠CNE=y﹣z,根据平行线性质得出∠1=x,∠2=∠CNE,代入求出即可.【解答】解:过C作CM∥AB,延长CD交EF于N,则∠CDE=∠E+∠CNE,即∠CNE=y﹣z∵CM∥AB,AB∥EF,∴CM∥AB∥EF,∴∠ABC=x=∠1,∠2=∠CNE,∵∠BCD=90°,∴∠1+∠2=90°,∴x+y﹣z=90°.故选:B.【点评】本题考查了平行线的性质和三角形外角性质的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,题目比较好,难度适中.10.如图,在△ABC中,AD是高,AE是角平分线,若∠B=α,∠C=β,则∠DAE=( )A. B. C. D.【分析】根据三角形的内角和定理,用α和β表示出∠DAE的度数即可.【解答】解:∵∠ABC+∠B+∠C=180°,∠B=α,∠C=β,∴∠BAC=180°﹣α﹣β.∵AE平分∠BAC,∴∠CAE∠BAC=90°.∵AD⊥BC,∴∠CAD=90°﹣β,∴∠DAE=∠CAD﹣∠CAE=90°﹣β﹣(90°).故选:A.【点评】本题主要考查了三角形内角和定理,熟知三角形的内角和定理是解题的关键.11.如果x2+2mx+9是一个完全平方式,则m的值是( )A.3 B.±3 C.6 D.±6【分析】根据完全平方公式是和的平方加减积的2倍,可得m的值.【解答】解:∵x2+2mx+9是一个完全平方式,∴2m=±6,∴m=±3,故选:B.【点评】本题考查了完全平方公式,完全平方公式是两数的平方和加减积的2倍,注意符合条件的m值有两个.12.已知a=8131,b=2741,c=961,则a,b,c的大小关系是( )A.a>b>c B.a>c>b C.a<b<c D.b>c>a【分析】先把81,27,9转化为底数为3的幂,再根据幂的乘方,底数不变,指数相乘化简.然后根据指数的大小即可比较大小.【解答】解:∵a=8131=(34)31=3124b=2741=(33)41=3123;c=961=(32)61=3122.则a>b>c.故选:A.【点评】变形为同底数幂的形式,再比较大小,可使计算简便.13.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于( )A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:5【分析】利用角平分线上的一点到角两边的距离相等的性质,可知三个三角形高相等,底分别是20,30,40,所以面积之比就是2:3:4.【解答】解:过点O作OD⊥AC于D,OE⊥AB于E,OF⊥BC于F,∵点O是内心,∴OE=OF=OD,∴S△ABO:S△BCO:S△CAO AB OE: BC OF: AC OD=AB:BC:AC=2:3:4,故选:C.【点评】本题主要考查了角平分线上的一点到两边的距离相等的性质及三角形的面积公式.做题时应用了三个三角形的高是相等的,这点是非常重要的.14.在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是( )A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早小时【分析】根据已知图象分别分析甲、乙两车的速度,进而分析得出答案.【解答】解:A、由图象横坐标可得,乙先出发的时间为0.5小时,正确,不合题意;B、∵乙先出发0.5小时,两车相距70km,∴乙车的速度为:(100﹣70)÷0.5=60(km/h),故乙行驶全程所用时间为:1(小时),由最后时间为1.75小时,可得乙先到达A地,故甲车整个过程所用时间为:1.75﹣0.5=1.25(小时),故甲车的速度为:80(km/h),故B选项正确,不合题意;C、由以上所求可得,甲出发0.5小时后行驶距离为:40km,乙车行驶的距离为:60km,40+60=100,故两车相遇,故C选项正确,不合题意;D、由以上所求可得,乙到A地比甲到B地早:1.75﹣1(小时),故此选项错误,符合题意.故选:D.【点评】本题考查了利用函数的图象解决实际问题,解决本题的关键正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.15.甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8km后遇到甲;④乙出发6分钟后追上甲.其中正确的有( )A.4个 B.3个 C.2个 D.1个【分析】观察函数图象可知,函数的横坐标表示时间,纵坐标表示路程,然后根据图象上特殊点的意义进行解答.【解答】解:①乙在28分时到达,甲在40分时到达,所以乙比甲提前了12分钟到达;故①正确;②根据甲到达目的地时的路程和时间知:甲的平均速度=1015(千米/时);故②正确;④设乙出发x分钟后追上甲,则有:x(18+x),解得x=6,故④正确;③由④知:乙第一次遇到甲时,所走的距离为:66(km),故③错误;所以正确的结论有三个:①②④,故选:B.【点评】读函数的图象时首先要理解横纵坐标表示的含义,理解问题叙述的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.16.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是( )A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)【分析】根据四边形的内角和为360°及翻折的性质,就可求出2∠A=∠1+∠2这一始终保持不变的性质.【解答】解:2∠A=∠1+∠2,理由:∵在四边形ADA′E中,∠A+∠A′+∠ADA′+∠AEA′=360°,则2∠A+180°﹣∠2+180°﹣∠1=360°,∴可得2∠A=∠1+∠2.故选:B.【点评】本题主要考查四边形的内角和及翻折的性质特点,解决本题的关键是熟记翻折的性质.17.早上,小明从家里步行去学校,出发一段时间后,小明妈妈发现小明的作业本落在家里,便带上作业本骑车追赶,途中追上小明两人稍作停留,妈妈骑车返回,小明继续步行前往学校,两人同时到达.设小明在途中的时间为x,两人之间的距离为y,则下列选项中的图象能大致反映y与x之间关系的是( )A. B.C. D.【分析】根据题意可以得到各段时间段内y随x的变化情况,从而可以判断哪个选项中的函数图象符合题意,本题得以解决.【解答】解:由题意可得,小明从家出发到妈妈发现小明的作业本落在家里这段时间,y随x的增大而增大,小明的妈妈开始给你小明送作业到追上小明这段时间,y随x的增大而减小,小明妈妈追上小明到各自继续行走这段时间,y随x的增大不变,小明和妈妈分别去学校、回家的这段时间,y随x的增大而增大,故选:B.【点评】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.18.如图所示,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.下列说法中正确的是( )A.B点表示此时快车到达乙地B.B﹣C﹣D段表示慢车先加速后减速最后到达甲地C.快车的速度为km/hD.慢车的速度为125km/h【分析】A、根据B点的纵坐标的意义回答问题;B、B﹣C﹣D段表示两车的车距与时间的关系;C、快车的速度;D、慢车的速度.【解答】解:A、B点表示快车与慢车出发4小时两车相遇;故本选项错误;B、B﹣C﹣D段表示快、慢车相遇后行驶一段时间快车到达乙地,慢车继续行驶,慢车共用了12小时到达甲地故本选项错误;C、快车的速度(km/h);故本选项正确;D、慢车的速度(km/h);故本选项错误;故选:C.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.19.如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.下列结论:①AC=BD;②∠AMB=40°;③OM平分∠BOC;④MO平分∠BMC.其中正确的个数为( )A.4 B.3 C.2 D.1【分析】由SAS证明△AOC≌△BOD得出∠OCA=∠ODB,AC=BD,①正确;由全等三角形的性质得出∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD,得出∠AMB=∠AOB=40°,②正确;作OG⊥MC于G,OH⊥MB于H,如图所示:则∠OGC=∠OHD=90°,由AAS证明△OCG≌△ODH(AAS),得出OG=OH,由角平分线的判定方法得出MO平分∠BMC,④正确;由∠AOB=∠COD,得出当∠DOM=∠AOM时,OM才平分∠BOC,假设∠DOM=∠AOM,则∠COM=∠BOM,由MO平分∠BMC得出∠CMO=∠BMO,推出△COM≌△BOM,得OB=OC,而OA=OB,所以OA=OC,而OA>OC,故③错误;即可得出结论.【解答】解:∵∠AOB=∠COD=40°,∴∠AOB+∠AOD=∠COD+∠AOD,即∠AOC=∠BOD,在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴∠OCA=∠ODB,AC=BD,①正确;∴∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD,∴∠AMB=∠AOB=40°,②正确;作OG⊥MC于G,OH⊥MB于H,如图2所示:则∠OGC=∠OHD=90°,在△OCG和△ODH中,,∴△OCG≌△ODH(AAS),∴OG=OH,∴MO平分∠BMC,④正确;∵∠AOB=∠COD,∴当∠DOM=∠AOM时,OM才平分∠BOC,假设∠DOM=∠AOM∵∠AOB=∠COD,∴∠COM=∠BOM,∵MO平分∠BMC,∴∠CMO=∠BMO,在△COM和△BOM中,,∴△COM≌△BOM(ASA),∴OB=OC,∵OA=OB∴OA=OC与OA>OC矛盾,∴③错误;正确的个数有3个;故选:B.【点评】本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识;证明三角形全等是解题的关键.20.如图,AB∥CD,F为AB上一点,FD∥EH,且FE平分∠AFG,过点F作FG⊥EH于点G,且∠AFG=2∠D,则下列结论:①∠D=30°;②2∠D+∠EHC=90°;③FD平分∠HFB;④FH平分∠GFD.其中正确结论的个数是( )A.1个 B.2个 C.3个 D.4个【分析】根据角平分线的性质和平行线的性质解答.延长FG,交CH于I,构造出直角三角形,利用直角三角形两锐角互余解答.【解答】解:延长FG,交CH于I.∵AB∥CD,∴∠BFD=∠D,∠AFI=∠FIH,∵FD∥EH,∴∠EHC=∠D,∵FE平分∠AFG,∴∠FIH=2∠AFE=2∠EHC,∴3∠EHC=90°,∴∠EHC=30°,∴∠D=30°,∴2∠D+∠EHC=2×30°+30°=90°,∴①∠D=30°;②2∠D+∠EHC=90°正确,∵FE平分∠AFG,∴∠AFI=30°×2=60°,∵∠BFD=30°,∴∠GFD=90°,∴∠GFH+∠HFD=90°,可见,∠HFD的值未必为30°,∠GFH未必为45°,只要和为90°即可,∴③FD平分∠HFB,④FH平分∠GFD不一定正确.故选B.【点评】本题考查了角平分线的性质和平行线的性质,二者有机结合,难度较大,需要作出辅助线,对能力要求较高.二.填空题(共9小题)21.已知am=3,an=2,则a2m﹣n的值为 4.5 .【分析】首先根据幂的乘方的运算方法,求出a2m的值;然后根据同底数幂的除法的运算方法,求出a2m﹣n的值为多少即可.【解答】解:∵am=3,∴a2m=32=9,∴a2m﹣n4.5.故答案为:4.5.【点评】此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.22.若(x﹣1)x+1=1,则x= ﹣1或2 .【分析】由于任何非0数的0次幂等于1,1的任何次幂都等于1,﹣1的偶次幂等于1,故应分三种情况讨论.【解答】解:当x+1=0,即x=﹣1时,原式=(﹣2)0=1;当x﹣1=1,x=2时,原式=13=1;当x﹣1=﹣1时,x=0,(﹣1)1=﹣1,舍去.故答案为:x=﹣1或2.【点评】主要考查了零指数幂的意义,既任何非0数的0次幂等于1.注意此题有两种情况.23.已知a、b为等腰△ABC的边长,且满足|a﹣5|+(b﹣11)2=0,则△ABC的周长是 27 .【分析】根据非负数的意义列出关于a、b的方程并求出a、b的值,再根据b是腰长和底边长两种情况讨论求解.【解答】解:∵|a﹣5|+(b﹣11)2=0,∴a﹣5=0,b﹣11=0,解得:a=5,b=11,又∵a,b是等腰△ABC的两边长,∴当b是腰,a是底时,△ABC三边长分别为:11,11,5,∴该等腰三角形的周长为:11+11+5=27,当a是腰,b是底时,△ABC三边长分别为:5,5,11,∵5+5=10<11,∴不满足三角形三边关系,应舍去.故答案为:27.【点评】本题考查了等腰三角形的性质、非负数的性质及三角形三边关系;解题主要利用了非负数的性质,分情况讨论求解时要注意利用三角形的三边关系对三边能否组成三角形做出判断.根据题意列出方程式正确解答本题的关键.24.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为 60°或120° .【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时,顶角是60°;当高在三角形外部时,顶角是120°.故答案为:60°或120°.【点评】此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出120°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.25.已知:如图所示,在△ABC中,点D,E,F分别为BC,AD,CE的中点,且S△ABC=4cm2,则阴影部分的面积为 1 cm2.【分析】易得△ABD,△ACD为△ABC面积的一半,同理可得△BEC的面积等于△ABC面积的一半,那么阴影部分的面积等于△BEC的面积的一半.【解答】解:∵D为BC中点,根据同底等高的三角形面积相等,∴S△ABD=S△ACDS△ABC4=2(cm2),同理S△BDE=S△CDES△BCE2=1(cm2),∴S△BCE=2(cm2),∵F为EC中点,∴S△BEFS△BCE2=1(cm2).故答案为1.【点评】此题考查了三角形中线的性质,解答此题的关键是知道同底等高的三角形面积相等.26.如图,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC= 70° .【分析】根据三角形内角和定理、角平分线的定义以及三角形外角定理求得∠DAC∠ACF(∠B+∠B+∠1+∠2);最后在△AEC中利用三角形内角和定理可以求得∠AEC的度数.【解答】解:∵三角形的外角∠DAC和∠ACF的平分线交于点E,∴∠EAC∠DAC,∠ECA∠ACF;又∵∠B=40°(已知),∠B+∠1+∠2=180°(三角形内角和定理),∴∠DAC∠ACF(∠B+∠2)(∠B+∠1)(∠B+∠B+∠1+∠2)=110°(外角定理),∴∠AEC=180°﹣(∠DAC∠ACF)=70°.故答案为:70°.【点评】此题主要考查了三角形内角和定理以及角平分线的性质,熟练应用角平分线的性质是解题关键.27.汽车开始行驶时,油箱中有油45升,如果每小时耗油6升,则油箱内余油量y(升)与行驶时间x(小时)的关系式为 y=45﹣6x .【分析】根据油箱内余油量=汽车开始行驶时油箱中的油量﹣每小时耗油量×行驶时间计算即可.【解答】解:y与x的关系式为y=45﹣6x.故答案为:y=45﹣6x.【点评】本题考查函数关系式,根据油箱内余油量=汽车开始行驶时油箱中的油量﹣每小时耗油量×行驶时间写出函数关系式是解题的关键.28.如图,A、B、C分别是线段A1B,B1C,C1A的中点,若△ABC的面积是1,那么△A1B1C1的面积 7 .【分析】连接AB1,BC1,CA1,根据等底等高的三角形的面积相等求出△ABB1,△A1AB1的面积,从而求出△A1BB1的面积,同理可求△B1CC1的面积,△A1AC1的面积,然后相加即可得解.【解答】解:如图,连接AB1,BC1,CA1,∵A、B分别是线段A1B,B1C的中点,∴S△ABB1=S△ABC=1,S△A1AB1=S△ABB1=1,∴S△A1BB1=S△A1AB1+S△ABB1=1+1=2,同理:S△B1CC1=2,S△A1AC1=2,∴△A1B1C1的面积=S△A1BB1+S△B1CC1+S△A1AC1+S△ABC=2+2+2+1=7.故答案为:7.【点评】本题考查了三角形的面积,主要利用了等底等高的三角形的面积相等,作辅助线把三角形进行分割是解题的关键.29.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若∠EFG=49°,则∠2﹣∠1= 16° .【分析】先利用平行线的性质得∠2=∠DEG,∠EFG=∠DEF=49°,再根据折叠的性质得∠DEF=∠GEF=49°,所以∠2=98°,接着利用互补计算出∠1,然后计算∠2﹣∠1.【解答】解:∵AD∥BC,∴∠2=∠DEG,∠EFG=∠DEF=49°,∵长方形纸片ABCD沿EF折叠后ED与BC的交点为G,∴∠DEF=∠GEF=49°,∴∠2=2×49°=98°,∴∠1=180°﹣98°=82°,∴∠2﹣∠1=98°﹣82°=16°.故答案为16°.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了折叠的性质.三.解答题(共28小题)30.计算:(1);(2)(2x﹣1)(3x+2)﹣3x(x﹣1).【分析】(1)先计算零指数幂,负整数指数幂和乘方,再去绝对值后计算加减法即可得到答案;(2)先根据多项式乘以多项式和单项式乘以多项式的计算法则去括号,然后合并同类项即可得到答案.【解答】解:(1)原式=﹣1﹣1﹣3﹣2=﹣7;(2)原式=6x2﹣3x+4x﹣2﹣3x2+3x=3x2+4x﹣2.【点评】本题主要考查了整式的混合计算,零指数幂和负整数指数幂等计算,熟知相关计算法则是解题的关键31.计算:(1)(a+3)2﹣(a+1)(a﹣1).(2)(x+y﹣3)(x+y+3).【分析】(1)分别用完全平方公式与平方差公式展开,再合并同类项即可;(2)先用平方差公式,再用完全平方公式展开即可.【解答】解:(1)原式=a2+6a+9﹣a2+1=6a+10;(2)原式=(x+y)2﹣9=x2+2xy+y2﹣9.【点评】本题考查了乘法公式的综合应用,掌握完全平方公式与平方差公式是解题的关键.32.计算:(1)a2b3 (﹣15a2b2);(2)(3x+7y)(3x﹣7y);(3)(x﹣y)3(x﹣y)2(y﹣x);(4)(x+y+z)(x+y﹣z).【分析】(1)根据单项式乘单项式计算即可;(2)根据平方差公式计算即可;(3)先变形,然后根据同底数幂的乘法计算即可;(4)先变形,然后根据平方差公式和完全平方公式计算即可.【解答】解:(1)a2b3 (﹣15a2b2)=﹣5a4b5;(2)(3x+7y)(3x﹣7y)=9x2﹣49y2;(3)(x﹣y)3(x﹣y)2(y﹣x)=﹣(x﹣y)3(x﹣y)2(x﹣y)=﹣(x﹣y)6;(4)(x+y+z)(x+y﹣z)=[(x+y)+z][(x+y)﹣z]=(x+y)2﹣z2=x2+2xy+y2﹣z2.【点评】本题考查整式的混合运算,熟练掌握运算法则是解答本题的关键.33.先化简,再求值:(x﹣2)2﹣(2x+3)(2x﹣3)+3x(x+2),其中x.【分析】根据完全平方公式、平方差公式和单项式乘多项式将题目中的式子展开,然后合并同类项,再将x的值代入化简后的式子计算即可.【解答】解:(x﹣2)2﹣(2x+3)(2x﹣3)+3x(x+2)=x2﹣4x+4﹣4x2+9+3x2+6x=2x+13,当x时,原式=213=14.【点评】本题考查整式的混合运算—化简求值,熟练掌握运算法则是解答本题的关键.34.化简求值:(3a﹣2)(2a﹣1)﹣5a(a﹣2),其中a2+3a﹣2=0.【分析】根据多项式乘多项式和单项式乘多项式将题目中的式子展开,然后合并同类项,再根据a2+3a﹣2=0,可以得到a2+3a=2,最后将a2+3a=2代入化简后的式子计算即可.【解答】解:(3a﹣2)(2a﹣1)﹣5a(a﹣2)=6a2﹣3a﹣4a+2﹣5a2+10a=a2+3a+2,∵a2+3a﹣2=0,∴a2+3a=2,∴原式=2+2=4.【点评】本题考查整式的混合运算—化简求值,熟练掌握运算法则是解答本题的关键.35.已知代数式A=3x2﹣3xy+x+1,B=x2+xy+2y.(1)求A﹣3B;(2)若(x+1)2+|y﹣2|=0,求A﹣3B的值;(3)若A﹣3B的值与x的取值无关,求y的值.【分析】(1)根据题意列式后再去括号,合并同类项即可;(2)根据绝对值及偶次幂的非负性求得x,y的值后代入(1)中所得结果中计算即可;(3)将(1)中所得结果整理后得到关于y的方程,解方程即可.【解答】解:(1)∵A=3x2﹣3xy+x+1,B=x2+xy+2y,∴A﹣3B=3x2﹣3xy+x+1﹣3(x2+xy+2y)=3x2﹣3xy+x+1﹣(3x2+3xy+6y)=3x2﹣3xy+x+1﹣3x2﹣3xy﹣6y=x﹣6xy﹣6y+1;(2)∵(x+1)2+|y﹣2|=0,∴x+1=0,y﹣2=0,解得:x=﹣1,y=2,则A﹣3B=x﹣6xy﹣6y+1=﹣1﹣6×(﹣1)×2﹣6×2+1=﹣1+12﹣12+1=0;(3)A﹣3B=x﹣6xy﹣6y+1=(1﹣6y)x﹣6y+1,∵A﹣3B的值与x的取值无关,∴1﹣6y=0,解得:y.【点评】本题考查整式的混合运算,绝对值及偶次幂的非负性,熟练掌握相关运算法则是解题的关键.36.回答下列问题(1)填空:x2(x)2﹣ 2 =(x)2+ 2 (2)若a5,则a2 23 ;(3)若a2﹣3a+1=0,求a2的值.【分析】(1)根据完全平方公式进行解答即可;(2)根据完全平方公式进行解答;(3)先根据a2﹣3a+1=0求出a3,然后根据完全平方公式求解即可.【解答】解:(1)2、2.(2)23.(3)∵a=0时方程不成立,∴a≠0,∵a2﹣3a+1=0两边同除a得:a﹣30,移项得:a3,∴a2(a)2﹣2=7.【点评】本题考查了完全平方公式,解答本题的关键在于熟练掌握完全平方公式.37.如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.求证:(1)AM⊥DM;(2)M为BC的中点.【分析】(1)根据平行线的性质得到∠BAD+∠ADC=180°,根据角平分线的定义得到∠MAD+∠ADM=90°,根据垂直的定义得到答案;(2)作NM⊥AD,根据角平分线的性质得到BM=MN,MN=CM,等量代换得到答案.【解答】解:(1)∵AB∥CD,∴∠BAD+∠ADC=180°,∵AM平分∠BAD,DM平分∠ADC,∴2∠MAD+2∠ADM=180°,∴∠MAD+∠ADM=90°,∴∠AMD=90°,即AM⊥DM;(2)作NM⊥AD交AD于N,∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM,即M为BC的中点.【点评】本题考查的是角平分线的性质,掌握平行线的性质和角的平分线上的点到角的两边的距离相等是解题的关键.38.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.【分析】(1)根据全等三角形的判定即可判断△AEC≌△BED;(2)由(1)可知:EC=ED,∠C=∠BDE,根据等腰三角形的性质即可知∠C的度数,从而可求出∠BDE的度数;【解答】(1)证明:∵AE和BD相交于点O,∴∠AOD=∠BOE.在△AOD和△BOE中,∠A=∠B,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO,∴∠AEC=∠BED.在△AEC和△BED中,,∴△AEC≌△BED(ASA).解:(2)∵△AEC≌△BED,∴EC=ED,∠C=∠BDE.在△EDC中,∵EC=ED,∠1=42°,∴∠C=∠EDC=69°,∴∠BDE=∠C=69°.【点评】本题考查全等三角形,解题的关键是熟练运用全等三角形的性质与判定,本题属于中等题型.39.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.【分析】(1)由SAS证明△ABD≌△ACE,得出对应边相等即可;(2)证出∠BAN=∠CAM,由全等三角形的性质得出∠B=∠C,由ASA证明△ACM≌△ABN,得出对应角相等即可.【解答】(1)证明:在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;(2)证明:∵∠1=∠2,∴∠1+∠DAE=∠2+∠DAE,即∠BAN=∠CAM,由(1)得:△ABD≌△ACE,∴∠B=∠C,在△ACM和△ABN中,,∴△ACM≌△ABN(ASA),∴∠M=∠N.【点评】本题考查了全等三角形的判定与性质;证明三角形全等是解决问题的关键.40.如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明理由.【分析】首先判断∠AED与∠ACB是一对同位角,然后根据已知条件推出DE∥BC,得出两角相等.【解答】解:∠AED=∠ACB.理由:∵∠1+∠4=180°(平角定义),∠1+∠2=180°(已知).∴∠2=∠4.∴EF∥AB(内错角相等,两直线平行).∴∠3=∠ADE(两直线平行,内错角相等).∵∠3=∠B(已知),∴∠B=∠ADE(等量代换).∴DE∥BC(同位角相等,两直线平行).∴∠AED=∠ACB(两直线平行,同位角相等).【点评】本题重点考查平行线的性质和判定,难度适中.41.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.【分析】(1)根据题意和题目中的条件可以找出△ABC≌△ADE的条件;(2)根据(1)中的结论和等腰直角三角形的定义可以得到∠FAE的度数;(3)根据题意和三角形全等的知识,作出合适的辅助线即可证明结论成立.【解答】证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,,∴△CGA≌△CDA(AAS),∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.【点评】本题考查全等三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.42.如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)说明BE=CF的理由;(2)如果AB=5,AC=3,求AE、BE的长.【分析】(1)连接BD,CD,由AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,根据角平分线的性质,即可得DE=DF,又由DG⊥BC且平分BC,根据线段垂直平分线的性质,可得BD=CD,继而可证得Rt△BED≌Rt△CFD,则可得BE=CF;(2)首先证得△AED≌△AFD,即可得AE=AF,然后设BE=x,由AB﹣BE=AC+CF,即可得方程5﹣x=3+x,解方程即可求得答案.【解答】(1)证明:连接BD,CD,∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,∵DG⊥BC且平分BC,∴BD=CD,在Rt△BED与Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴BE=CF;(2)解:在△AED和△AFD中,,∴△AED≌△AFD(AAS),∴AE=AF,设BE=x,则CF=x,∵AB=5,AC=3,AE=AB﹣BE,AF=AC+CF,∴5﹣x=3+x,解得:x=1,∴BE=1,AE=AB﹣BE=5﹣1=4.【点评】此题考查了角平分线的性质、线段垂直平分线的性质以及全等三角形的判定与性质.此题难度适中,解题的关键是准确作出辅助线,利用方程思想与数形结合思想求解.43.如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有 ② (请写序号,少选、错选均不得分).【分析】(1)欲证明AE=CD,只要证明△ABE≌△CBD;(2)由△ABE≌△CBD,推出∠BAE=∠BCD,由∠NMC=180°﹣∠BCD﹣∠CNM,∠ABC=180°﹣∠BAE﹣∠ANB,又∠CNM=∠ANB,∠ABC=90°,可得∠NMC=90°;(3)结论:②;作BK⊥AE于K,BJ⊥CD于J.利用角平分线的判定定理证明即可;【解答】(1)证明:∵∠ABC=∠DBE,∴∠ABC+∠CBE=∠DBE+∠CBE,即∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD,∴AE=CD.(2)∵△ABE≌△CBD,∴∠BAE=∠BCD,∵∠NMC=180°﹣∠BCD﹣∠CNM,∠ABC=180°﹣∠BAE﹣∠ANB,又∠CNM=∠ANB,∵∠ABC=90°,∴∠NMC=90°,∴AE⊥CD.(3)结论:②理由:作BK⊥AE于K,BJ⊥CD于J.∵△ABE≌△CBD,∴AE=CD,S△ABE=S△CDB,∴ AE BK CD BJ,∴BK=BJ,∵作BK⊥AE于K,BJ⊥CD于J,∴BM平分∠AMD.不妨设①成立,则△CBM≌△EBM,则AB=BD,显然不可能,故①错误.故答案为②.【点评】本题考查全等三角形的判定和性质、等腰直角三角形的性质、角平分线的性质定理等知识,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线解决问题.44.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AM=CM,BN=CN,然后求出△CMN的周长=AB;(2)根据三角形的内角和定理列式求出∠MNF+∠NMF,再求出∠A+∠B,根据等边对等角可得∠A=∠ACM,∠B=∠BCN,然后利用三角形的内角和定理列式计算即可得解.【解答】解:(1)∵DM、EN分别垂直平分AC和BC,∴AM=CM,BN=CN,∴△CMN的周长=CM+MN+CN=AM+MN+BN=AB,∵△CMN的周长为15cm,∴AB=15cm;(2)∵∠MFN=70°,∴∠MNF+∠NMF=180°﹣70°=110°,∵∠AMD=∠NMF,∠BNE=∠MNF,∴∠AMD+∠BNE=∠MNF+∠NMF=110°,∴∠A+∠B=90°﹣∠AMD+90°﹣∠BNE=180°﹣110°=70°,∵AM=CM,BN=CN,∴∠A=∠ACM,∠B=∠BCN,∴∠MCN=180°﹣2(∠A+∠B)=180°﹣2×70°=40°.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,三角形的内角和定理,(2)整体思想的利用是解题的关键.45.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于点E,点F在AC上,且BD=DF.(1)求证:CF=EB;(2)请你判断AE、AF与BE之间的数量关系,并说明理由.【分析】(1)根据角平分线的性质得到DC=DE,根据直角三角形全等的判定定理得到Rt△DCF≌Rt△DEB,根据全等三角形的性质定理得到答案;(2)根据全等三角形的性质定理得到AC=AE,根据(1)的结论得到答案.【解答】证明:(1)∵AD平分∠BAC,DE⊥AB,∠C=90°,∴DC=DE,在Rt△DCF和Rt△DEB中,,∴Rt△DCF≌Rt△DEB,∴CF=EB;(2)AF+BE=AE.∵Rt△DCF≌Rt△DEB,∴DC=DE,∴Rt△DCA≌Rt△DEA(HL),∴AC=AE,∴AF+FC=AE,即AF+BE=AE.【点评】本题考查的是角平分线的性质和三角形全等的判定和性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键,注意直角三角形全等的判定方法.46.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?【分析】(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,由已知可得BD=PC,BP=CQ,∠ABC=∠ACB,即据SAS可证得△BPD≌△CQP.(2)可设点Q的运动速度为x(x≠3)cm/s,经过t s△BPD与△CQP全等,则可知PB=3tcm,PC=(8﹣3t)cm,CQ=xtcm,据(1)同理可得当BD=PC,BP=CQ或BD=CQ,BP=PC时两三角形全等,求x的解即可.【解答】解:(1)结论:△BPD与△CQP全等.理由:经过1秒后,PB=3cm,PC=5cm,CQ=3cm,∵△ABC中,AB=AC,∴∠ABC=∠ACB,∴在△BPD和△CQP中,,∴△BPD≌△CQP(SAS).(2)设点Q的运动速度为x(x≠3)cm/s,经过t s△BPD与△CQP全等;则可知PB=3tcm,PC=(8﹣3t)cm,CQ=xtcm,∵AB=AC,∴∠B=∠C,根据全等三角形的判定定理SAS可知,有两种情况:①当BD=PC,BP=CQ时,②当BD=CQ,BP=PC时,两三角形全等;①当BD=PC且BP=CQ时,8﹣3t=5且3t=xt,解得x=3,∵x≠3,∴舍去此情况;②BD=CQ,BP=PC时,5=xt且3t=8﹣3t,解得:x;故若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为cm/s时,能够使△BPD与△CQP全等.【点评】本题主要考查了全等三角形全等的判定,涉及到等腰三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.47.如图:AE⊥AB,AF⊥AC,AE=AB,AF=AC,(1)图中EC、BF有怎样的数量和位置关系?试证明你的结论.(2)连接AM,求证:MA平分∠EMF.【分析】(1)先由条件可以得出∠EAC=∠BAE,再证明△EAC≌△BAF就可以得出结论;(2)作AP⊥CE于P,AQ⊥BF于Q.由△EAC≌△BAF,推出AP=AQ(全等三角形对应边上的高相等).由AP⊥CE于P,AQ⊥BF于Q,可得AM平分∠EMF;【解答】(1)解:结论:EC=BF,EC⊥BF.理由:∵AE⊥AB,AF⊥AC,∴∠EAB=∠CAF=90°,∴∠EAB+∠BAC=∠CAF+∠BAC,∴∠EAC=∠BAF.在△EAC和△BAF中,,∴△EAC≌△BAF(SAS),∴EC=BF.∠AEC=∠ABF∵∠AEG+∠AGE=90°,∠AGE=∠BGM,∴∠ABF+∠BGM=90°,∴∠EMB=90°,∴EC⊥BF.∴EC=BF,EC⊥BF.(2)证明:作AP⊥CE于P,AQ⊥BF于Q.∵△EAC≌△BAF,∴AP=AQ(全等三角形对应边上的高相等).∵AP⊥CE于P,AQ⊥BF于Q,∴AM平分∠EMF.【点评】本题考查全等三角形的判定与性质的运用,角平分线的判定定理、垂直的判定的运用等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.48.如图,边长为a的大正方形中有一个边长为b的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示).(1)实验与操作:上述操作能验证的等式是: D (请选择正确的选项).A.a2﹣ab=a(a﹣b)B.a2﹣2ab+b2=(a﹣b)2C.a2+ab=a(a+b)D.a2﹣b2=(a+b)(a﹣b)(2)应用与计算:请利用你从(1)选出的等式,完成下列各题:①根据以上等式简便计算:1022﹣982.②计算:.【分析】(1)分别表示出图1和图2阴影部分的面积,根据面积相等即可求解;(2)①利用平方差公式直接计算即可求解;②利用平方差公式即可求解;【解答】解:(1)由图1可得,阴影部分的面积为a2﹣b2,由图2可得,阴影部分的面积为(a+b)(a﹣b),∵图1和图2阴影部分的面积相等,∴a2﹣b2=(a+b)(a﹣b),故选:D.(2)①1022﹣982=(102+98)×(102﹣98)=200×4=800;②.【点评】本题考查了平方差公式的几何背景及其应用与拓展,熟练掌握公式并灵活运用是解题的关键.49.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是 1500 米.(2)小明在书店停留了 4 分钟.(3)本次上学途中,小明一共行驶了 2700 米.一共用了 14 分钟.(4)在整个上学的途中 12分钟至14分钟 (哪个时间段)小明骑车速度最快,最快的速度是 450 米/分.【分析】(1)因为y轴表示路程,起点是家,终点是学校,故小明家到学校的路程是1500米;(2)与x轴平行的线段表示路程没有变化,观察图象分析其对应时间即可.(3)共行驶的路程=小明家到学校的距离+折回书店的路程×2.(4)观察图象分析每一时段所行路程,然后计算出各时段的速度进行比较即可.【解答】解:(1)∵y轴表示路程,起点是家,终点是学校,∴小明家到学校的路程是1500米.(2)由图象可知:小明在书店停留了4分钟.(3)1500+600×2=2700(米)即:本次上学途中,小明一共行驶了 2700米.一共用了 14分钟.(4)折回之前的速度=1200÷6=200(米/分)折回书店时的速度=(1200﹣600)÷2=300(米/分),从书店到学校的速度=(1500﹣600)÷2=450(米/分)经过比较可知:小明在从书店到学校的时候速度最快即:在整个上学的途中 从12分钟到14分钟小明骑车速度最快,最快的速度是 450 米/分【点评】本题考查了函数的图象及其应用,解题的关键是理解函数图象中x轴、y轴表示的量及图象上点的坐标的意义.50.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=115°时,∠EDC= 25 °,∠AED= 65 °;(2)线段DC的长度为何值时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,求∠BDA的度数;若不可以,请说明理由.【分析】(1)根据三角形内角和定理得到∠BAD=25°,根据等腰三角形的性质得到∠C=∠B=40°,根据三角形内角和定理计算,得到答案;(2)当DC=2时,利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,得到∠ADB=∠DEC,根据AB=DC=2,证明△ABD≌△DCE;(3)分DA=DE、AE=AD、EA=ED三种情况,根据等腰三角形的性质、三角形内角和定理计算.【解答】解:(1)∵AB=AC,∴∠C=∠B=40°,∵∠ADE=40°,∠BDA=115°,∵∠EDC=180°﹣∠ADB﹣∠ADE=25°,∴∠AED=∠EDC+∠C=25°+40°=65°,故答案为:25;65;(2)当DC=2时,△ABD≌△DCE,理由:∵AB=2,DC=2,∴AB=DC,∵∠C=40°,∴∠DEC+∠EDC=140°,∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,在△ABD和△DCE中,,∴△ABD≌△DCE(AAS);(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形,①当DA=DE时,∠DAE=∠DEA=70°,∴∠BDA=∠DAE+∠C=70°+40°=110°;②当AD=AE时,∠AED=∠ADE=40°,∴∠DAE=100°,此时,点D与点B重合,不合题意;③当EA=ED时,∠EAD=∠ADE=40°,∴∠BDA=∠EAD+∠C=40°+40°=80°;综上所述,当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形.【点评】本题考查的是等腰三角形的判定与性质、全等三角形的判定与性质、三角形外角的性质,掌握全等三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.51.如图,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B出发,以2cm/秒的速度沿BC向点C运动,设点P的运动时间为t秒:(1)PC= (10﹣2t) cm.(用t的代数式表示)(2)当t为何值时,△ABP≌△DCP?(3)当点P从点B开始运动,同时,点Q从点C出发,以v cm/秒的速度沿CD向点D运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.【分析】(1)根据P点的运动速度可得BP的长,再利用BC﹣BP即可得到CP的长;(2)当△ABP≌△DCP时,根据三角形全等的条件可得当BP=CP时,进而得出答案;(3)此题主要分两种情况①当△ABP≌△QCP时;②当△ABP≌△PCQ时,然后分别计算出t的值,进而得到v的值.【解答】解:(1)点P从点B出发,以2cm/秒的速度沿BC向点C运动,点P的运动时间为t秒时,BP=2t,则PC=(10﹣2t)cm;故答案为:(10﹣2t);(2)当△ABP≌△DCP时,则BP=CP=5,故2t=5,解得:t=2.5;(3)①如图1,当△ABP≌△QCP,则BA=CQ,PB=PC,∵PB=PC,∴BP=PCBC=5,2t=5,解得:t=2.5,BA=CQ=6,v×2.5=6,解得:v=2.4(cm/秒).②如图2,当△ABP≌△PCQ,则BP=CQ,AB=PC.∵AB=6,∴PC=6,∴BP=10﹣6=4,2t=4,解得:t=2,CQ=BP=4,v×2=4,解得:v=2;综上所述:当v=2.4cm/秒或2cm/秒时△ABP与△PQC全等.【点评】此题主要考查了全等三角形的判定,关键是掌握全等三角形全等的条件,找准对应边.52.(本题有3小题,第(1)小题为必答题,满分5分;第(2)、(3)小题为选答题,其中,第(2)小题满分3分,第(3)小题满分6分,请从中任选1小题作答,如两题都答,以第(2)小题评分.)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.【分析】(1)根据已知可利用AAS证明①△ADC≌△CEB,由此可证②DE=AD+BE;(2)根据已知可利用AAS证明△ADC≌△CEB,由此可证DE=AD﹣BE;(3)根据已知可利用AAS证明△ADC≌△CEB,由此可证DE=BE﹣AD.【解答】证明:(1)①∵∠ADC=∠ACB=∠BEC=90°,∴∠CAD+∠ACD=90°,∠BCE+∠CBE=90°,∠ACD+∠BCE=90°.∴∠CAD=∠BCE.∵AC=BC,∴△ADC≌△CEB(AAS).②∵△ADC≌△CEB,∴CE=AD,CD=BE.∴DE=CE+CD=AD+BE.解:(2)∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE.又∵AC=BC,∴△ACD≌△CBE(AAS).∴CE=AD,CD=BE.∴DE=CE﹣CD=AD﹣BE.(3)当MN旋转到图3的位置时,AD、DE、BE所满足的等量关系是DE=BE﹣AD(或AD=BE﹣DE,BE=AD+DE等).∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE,又∵AC=BC,∴△ACD≌△CBE(AAS),∴AD=CE,CD=BE,∴DE=CD﹣CE=BE﹣AD.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,再根据全等三角形对应边相等得出结论.53.如图,CD是经过∠BCA顶点C的一条直线,CA=CB,E、F分别是直线CD上两点,且∠BEC=∠CFA=α.(1)若直线CD经过∠BCA的内部,且E、F在射线CD上.①如图1,若∠BCA=90°,α=90°,则BE = CF;②如图2,若0°<∠BCA<180°,请添加一个关于α与∠BCA关系的条件 α+∠BCA=180° ,使①中的结论仍然成立,并说明理由;(2)如图3,若直线CD经过∠BCA的外部,α=∠BCA,请提出关于EF,BE,AF三条线段数量关系的合理猜想,并简述理由.【分析】(1)①由∠BCA=90°,∠BEC=∠CFA=α=90°,可得∠CBE=∠ACF,从而可证△BCE≌△CAF,故BE=CF.②若BE=CF,则可使得△BCE≌△CAF.根据题目已知条件添加条件,再使得一对角相等,△BCE≌△CAF便可得证.(2)题干已知条件可证△BCE≌△CAF,故BE=CF,EC=FA,从而可证明EF=BE+AF.【解答】解:(1)①∵∠BEC=∠CFA=α=90°,∴∠BCE+∠CBE=180°﹣∠BEC=90°.又∵∠BCA=∠BCE+∠ACF=90°,∴∠CBE=∠ACF.在△BCE和△CAF中,∴△BCE≌△CAF(AAS).∴BE=CF.②α+∠BCA=180°,理由如下:∵∠BEC=∠CFA=α,∴∠BEF=180°﹣∠BEC=180°﹣α.又∵∠BEF=∠EBC+∠BCE,∴∠EBC+∠BCE=180°﹣α.又∵α+∠BCA=180°,∴∠BCA=180°﹣α.∴∠BCA=∠BCE+∠ACF=180°﹣α.∴∠EBC=∠FCA.在△BCE和△CAF中,∴△BCE≌△CAF(AAS).∴BE=CF.(2)EF=BE+AF,理由如下:∵∠BCA=α,∴∠BCE+∠ACF=180°﹣∠BCA=180°﹣α.又∵∠BEC=α,∴∠EBC+∠BCE=180°﹣∠BEC=180°﹣α.∴∠EBC=∠FCA.在△BEC和△CFA中,∴△BEC≌△CFA(AAS).∴BE=CF,EC=FA.∴EF=EC+CF=FA+BE,即EF=BE+AF.【点评】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.54.如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.【分析】(1)因为点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,所以AP=BQ.AB=AC,∠B=∠CAP=60°,因而运用边角边定理可知△ABQ≌△CAP.再用全等三角形的性质定理及三角形的角间关系、三角形的外角定理,可求得∠CMQ的度数.(2)设时间为t,则AP=BQ=t,PB=4﹣t.分别就①当∠PQB=90°时;②当∠BPQ=90°时利用直角三角形的性质定理求得t的值.(3)首先利用边角边定理证得△PBC≌△QCA,再利用全等三角形的性质定理得到∠BPC=∠MQC.再运用三角形角间的关系求得∠CMQ的度数.【解答】解:(1)∠CMQ=60°不变.∵等边三角形中,AB=AC,∠B=∠CAP=60°又由条件得AP=BQ,在△ABQ和△CAP中,,∴△ABQ≌△CAP(SAS),∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°.(2)设时间为t,则AP=BQ=t,PB=4﹣t①当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,得4﹣t=2t,t;②当∠BPQ=90°时,∵∠B=60°,∴BQ=2BP,得t=2(4﹣t),t;∴当第秒或第秒时,△PBQ为直角三角形.(3)∠CMQ=120°不变.∵在等边三角形中,BC=AC,∠ABC=∠ACB=60°∴∠PBC=∠ACQ=120°,又由条件得BP=CQ,在△PBC和△QCA中,,∴△PBC≌△QCA(SAS)∴∠BPC=∠MQC又∵∠PCB=∠MCQ,∴∠CMQ=∠PBC=180°﹣60°=120°【点评】此题是一个综合性很强的题目.本题考查等边三角形的性质、全等三角形的判定与性质、直角三角形的性质.难度很大,有利于培养同学们钻研和探索问题的精神.55.如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE为一边作等边三角形DEF,连接CF.【问题解决】如图1,若点D在边BC上,求证:CE+CF=CD;【类比探究】如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.【分析】【问题解决】在CD上截取CH=CE,易证△CEH是等边三角形,得出EH=EC=CH,证明△DEH≌△FEC(SAS),得出DH=CF,即可得出结论;【类比探究】过D作DG∥AB,交AC的延长线于点G,由平行线的性质易证∠GDC=∠DGC=60°,得出△GCD为等边三角形,则DG=CD=CG,证明△EGD≌△FCD(SAS),得出EG=FC,即可得出FC=CD+CE.【解答】【问题解决】证明:在CD上截取CH=CE,如图1所示:∵△ABC是等边三角形,∴∠ECH=60°,∴△CEH是等边三角形,∴EH=EC=CH,∠CEH=60°,∵△DEF是等边三角形,∴DE=FE,∠DEF=60°,∴∠DEH+∠HEF=∠FEC+∠HEF=60°,∴∠DEH=∠FEC,在△DEH和△FEC中,,∴△DEH≌△FEC(SAS),∴DH=CF,∴CD=CH+DH=CE+CF,∴CE+CF=CD;【类比探究】解:线段CE,CF与CD之间的等量关系是FC=CD+CE;理由如下:∵△ABC是等边三角形,∴∠A=∠B=60°,过D作DG∥AB,交AC的延长线于点G,如图2所示:∵GD∥AB,∴∠GDC=∠B=60°,∠DGC=∠A=60°,∴∠GDC=∠DGC=60°,∴△GCD为等边三角形,∴DG=CD=CG,∠GDC=60°,∵△EDF为等边三角形,∴ED=DF,∠EDF=∠GDC=60°,∴∠EDG=∠FDC,在△EGD和△FCD中,,∴△EGD≌△FCD(SAS),∴EG=FC,∴FC=EG=CG+CE=CD+CE.【点评】本题考查了等边三角形的判定与性质、全等三角形的判定与性质、平行线的性质等知识;作辅助线构建等边三角形是解题的关键.56.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连接EF,AG.求证:EF=FG.(2)如图2,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.【分析】(1)证△ADG≌△ABE,△FAE≌△FAG,根据全等三角形的性质求出即可;(2)过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.通过证明△ABM≌△ACE(SAS)推知全等三角形的对应边AM=AE、对应角∠BAM=∠CAE;然后由等腰直角三角形的性质和∠MAN=45°得到∠MAN=∠EAN=45°,所以△MAN≌△EAN(SAS),故全等三角形的对应边MN=EN;最后由勾股定理得到EN2=EC2+NC2即MN2=BM2+NC2.【解答】(1)证明:在正方形ABCD中,∠ABE=∠ADG,AD=AB,在△ABE和△ADG中,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∴∠EAG=90°,在△FAE和△FAG中,,∴△FAE≌△FAG(SAS),∴EF=FG;(2)解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN中,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.∴MN2=BM2+NC2.∵BM=1,CN=3,∴MN2=12+32,∴MN【点评】本题主要考查正方形的性质,全等三角形的判定和性质、等腰直角三角形的性质以及勾股定理的综合应用.57.(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF∠BAD.求证:EF=BE+FD;(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF∠BAD,(1)中的结论是否仍然成立?(3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.【分析】(1)可通过构建全等三角形来实现线段间的转换.延长EB到G,使BG=DF,连接AG.目的就是要证明三角形AGE和三角形AEF全等将EF转换成GE,那么这样EF=BE+DF了,于是证明两组三角形全等就是解题的关键.三角形ABE和AEF中,只有一条公共边AE,我们就要通过其他的全等三角形来实现,在三角形ABG和AFD中,已知了一组直角,BG=DF,AB=AD,因此两三角形全等,那么AG=AF,∠1=∠2,那么∠1+∠3=∠2+∠3=∠EAF∠BAD.由此就构成了三角形ABE和AEF全等的所有条件(SAS),那么就能得出EF=GE了.(2)思路和作辅助线的方法与(1)完全一样,只不过证明三角形ABG和ADF全等中,证明∠ABG=∠ADF时,用到的等角的补角相等,其他的都一样.因此与(1)的结果完全一样.(3)按照(1)的思路,我们应该通过全等三角形来实现相等线段的转换.就应该在BE上截取BG,使BG=DF,连接AG.根据(1)的证法,我们可得出DF=BG,GE=EF,那么EF=GE=BE﹣BG=BE﹣DF.所以(1)的结论在(3)的条件下是不成立的.【解答】证明:(1)延长EB到G,使BG=DF,连接AG.∵∠ABG=∠ABC=∠D=90°,AB=AD,∴△ABG≌△ADF.∴AG=AF,∠1=∠2.∴∠1+∠3=∠2+∠3=∠EAF∠BAD.∴∠GAE=∠EAF.又∵AE=AE,∴△AEG≌△AEF.∴EG=EF.∵EG=BE+BG.∴EF=BE+FD(2)(1)中的结论EF=BE+FD仍然成立.(3)结论EF=BE+FD不成立,应当是EF=BE﹣FD.证明:在BE上截取BG,使BG=DF,连接AG.∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF.∵AB=AD,∴△ABG≌△ADF.∴∠BAG=∠DAF,AG=AF.∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF∠BAD.∴∠GAE=∠EAF.∵AE=AE,∴△AEG≌△AEF.∴EG=EF∵EG=BE﹣BG∴EF=BE﹣FD.【点评】本题考查了三角形全等的判定和性质;本题中通过全等三角形来实现线段的转换是解题的关键,没有明确的全等三角形时,要通过辅助线来构建与已知和所求条件相关联全等三角形.第1页(共1页) 展开更多...... 收起↑ 资源预览