河南省平顶山市2025届九年级下学期第三次联考数学试卷(含部分答案)

资源下载
  1. 二一教育资源

河南省平顶山市2025届九年级下学期第三次联考数学试卷(含部分答案)

资源简介

2024-2025学年九年级第三次质量检测试卷
数学
(满分120分,考试时间100分钟)
一、选择题(每小题3分,共30分.下列各小题均有四个选项,其中只有一个是正确的)
1. 的绝对值是( )
A. B. C. D.
2. 通常晶体具有固定的熔点,当晶体达到纳米尺寸时却截然不同.例如:金的熔点为,而直径为的金粉熔点降低到,此特性可应用于粉末冶金工业.已知,则用科学记数法可表示为( )
A B. C. D.
3. 围棋在古代被列为“琴棋书画”四大文化之一,蕴含着中华文化的丰富内涵,如图所示是一个无盖的围棋罐,其主视图为(  )
A. B. C. D.
4. 如图,将一把等腰直角三角尺和一把直尺摆放在同一平面内,若,则的度数为( )
A. B. C. D.
5. 若分式是最简分式,则△表示的是( )
A. B. C. D.
6. 世界是物质的,物质都是由化学元素组成的,其中化合物是由两种或两种以上不同元素组成的纯净物.在化学元素“”“”“”“”中,任意选择两种化学元素,可以组成化合物(氯化钠)的概率是( )
A. B. C. D.
7. 如图,点在上,,若,则的度数为( )
A. B. C. D.
8. 如图,在等边三角形中,点D在边上,连接,将绕点B旋转一定角度,使得,连接.若,则( )
A. B. C. D.
9. 如图,在平面直角坐标系中,的顶点O为坐标原点,,C是斜边的中点,且交x轴于点D.将沿x轴向右平移得到,当的中点E恰好落在y轴上时,点的坐标为( )
A. B. C. D. (7, 0)
10. 如图1, 点E在正方形的边上, 且 点P沿从点 B运动到点D,设B,P两点间的距离为x,,图2是点P运动时y随x变化的关系图象,若图象的最低点M的纵坐标为 则最高点N的纵坐标a的值为( )
A. 6 B. C. D.
二、填空题(每小题3分,共15分)
11. 若有意义,则的取值范围是______.
12. 若一元二次方程无实数根,则实数的取值范围为______.
13. 黄鹤楼是武汉市著名旅游景点,享有“天下江山第一楼”的美誉.在一次综合实践活动中,某数学小组用无人机测量黄鹤楼的高度,具体过程如下:如图,将无人机垂直上升至距水平地面的C处,测得黄鹤楼顶端A的俯角为,底端B的俯角为,则测得黄鹤楼的高度是__________m.(参考数据:)
14. 如图,在平面直角坐标系中,矩形和正方形的顶点A,C,D 均在坐标轴上,点 F 是边的中点,点 B,E 在反比例函数()的图象上.若,则k的值为____________.
15. 如图,在中,,点D,E分别是边的中点,连接.将绕点D按顺时针方向旋转,点A,E的对应点分别为点G,F,与交于点P.当直线与的一边平行时,的长为____.
三、解答题(本大题共8个小题,共75分)
16. (1)计算:.
(2)下面是某同学计算的解题过程:
解: ………①
………………②
…………………………③
上述解题过程从第几步开始出现错误?请写出完整的正确解题过程.
17. 为了培养学生的劳动习惯,提升学生的劳动技能,某中学准备开展劳动教育实践活动.学校计划随机抽取部分学生,对他们进行问卷调查,问卷如下:
劳动教育实践活动的意向项目及近一个月平均每天的劳动时长调查问卷 1.你希望学校开展的劳动教育实践项目是( )(必选,单选题) A. 种植花草蔬菜 B. 房间的清洁与整理 C. 烹饪 D.传统工艺制作 2.你近一个月平均每天的劳动时长是 .(必填题,填一 个数据)
(1)下列抽取学生的方法最合适的是( )
A.从九年级随机抽取两个班的学生
B.从七、八、九年级各随机抽取若干名女生
C.从全校各个班级中各随机抽取若干名学生
(2)学校采用(1)中最合适抽样方法进行问卷调查,并将调查结果绘制成如下统计图表(经核实,频数分布表中有个数据有误):
意向项目扇形统计图
近一个月平均每天的劳动时长频数分布表
组别 第1组 第2组 第3组 第4组 第5组
时长
频数 6 12 15 21 6
所占百分比
根据以上信息,解答下列问题:
填空:频数分布表中第 组对应的一个数据有误,应改为 .
求样本中意向项目选择B项的人数 .
若该地教育部门倡议本地区中学生每天参加劳动的时间不少于,请结合这次调查获得的数据给该中学提出一条合理化建议,并说明理由.
18. 在学习了矩形与菱形的相关知识后,小明同学进行了更深入的研究,他发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他的想法与思路,完成以下作图与填空:
(1)如图,在矩形中,点是对角线的中点.用尺规过点作的垂线,分别交,于点,,连接,.(不写作法,保留作图痕迹)
(2)已知:矩形,点,分别在,上,经过对角线的中点,且.求证:四边形是菱形.
证明:∵四边形是矩形,
∴.
∴①,.
∵点是的中点,
∴②.
∴(AAS).
∴③.
又∵,
∴四边形是平行四边形.
∵,
∴四边形是菱形.
进一步思考,如果四边形是平行四边形呢?请你模仿题中表述,写出你猜想的结论:④.
19. 如图,直线和相交,交点分别为.
(1)请用无刻度的直尺和圆规过点作直线l的垂线(保留作图痕迹,不写作法).
(2)点是外一点,分别连接交于点,连接.(1)中所作垂线和交于点,若,且,求的度数.
20. 如图,正比例函数的图象与反比例函数的图象的一个交点是.
(1)求出这两个函数的表达式,并直接写出这两个函数图象的另一个交点的坐标.
(2)写出使反比例函数大于正比例函数的x的取值范围.
(3)点在正比例函数的图象上,点,点,点都在反比例函数的图象上,比较,,,的大小关系,并用“<”连接.
21. 为响应新农村建设,改善农村居住环境,某村村委会准备购买A,B两种桶装环保漆,对村里古建筑民居进行粉刷,已知A种环保漆每桶价格比B种环保漆多20元,购买3桶A种环保漆和5桶B种环保漆共需1340元.
(1)求A,B两种环保漆每桶价格分别是多少元.
(2)已知A种环保漆每桶可粉刷的面积,B种环保漆每桶可粉刷的面积.村委会计划用46000元的专项资金购买200桶A,B两种环保漆,并支付粉刷工人的工资,且粉刷工人的工资不少于专项资金的,求这200桶环保漆可粉刷的最大面积.
22. 在平面直角坐标系中,设二次函数(b,c为常数).
(1)写出一组b,c的值,使抛物线与x轴有两个不同的交点,并说明理由.
(2)若抛物线经过,.
①求抛物线的表达式,并写出顶点坐标;
②设抛物线与y轴交于点A,点B为抛物线上的一点,且到y轴的距离为2个单位长度,点为抛物线上点A,B之间(不含点A,B)的一个动点,求点P的纵坐标n的取值范围.
23. 定义:四边形的一条对角线把这个四边形分成了两个三角形;如果这两个三角形相似(不全等),就把这条对角线叫做这个四边形的“相似对角线”.
理解:
(1)如图1,的三个顶点均在正方形网格中的格点上.若四边形是以为“相似对角线”的四边形,请用无刻度的直尺在网格中画出点(保留作图痕迹,找出2个即可);
(2)如图2,在四边形中,,,,对角线平分.那么是四边形的“相似对角线”吗?请说明理由;
运用:
(3)如图3.已知是四边形的“相似对角线”,,平分.连接.若的面积为,直接写出的长.
2024-2025学年九年级第三次质量检测试卷
数学
(满分120分,考试时间100分钟)
一、选择题(每小题3分,共30分.下列各小题均有四个选项,其中只有一个是正确的)
【1题答案】
【答案】A
【2题答案】
【答案】D
【3题答案】
【答案】B
【4题答案】
【答案】D
【5题答案】
【答案】D
【6题答案】
【答案】A
【7题答案】
【答案】C
【8题答案】
【答案】D
【9题答案】
【答案】A
【10题答案】
【答案】C
二、填空题(每小题3分,共15分)
【11题答案】
【答案】
【12题答案】
【答案】
【13题答案】
【答案】51
【14题答案】
【答案】2
【15题答案】
【答案】或
三、解答题(本大题共8个小题,共75分)
【16题答案】
【答案】(1)6;(2)从第②步开始出现错误,正确的解题过程见解析
【17题答案】
【答案】(1)C (2)4;27建议学校多开展育,让学生养成积极劳动好习惯,理由见详解
【18题答案】
【答案】(1)见解析 (2)①;②;③;④四边形是菱形
【19题答案】
【答案】(1)见解析 (2)
【20题答案】
【答案】(1),,这两个函数图象的另一个交点的坐标是
(2)或
(3)
【21题答案】
【答案】(1)A,B两种环保漆每桶价格分别是180元和160元
(2)这200桶环保漆可粉刷的最大面积为
【22题答案】
【答案】(1),理由见解析
(2)①,;②且
【23题答案】
【答案】(1)见解析(答案不唯一);(2)是;理由见解析;(3)

展开更多......

收起↑

资源预览