资源简介 (共63张PPT)专题一 高考中的导数应用问题函数与导数的综合问题一般是高考大题中的重难题型,一般两问.第一问考查求曲线的切线方程、求函数的单调区间、由函数的极值点或已知曲线的切线方程求参数等,属于基础问题;第二问一般为利用导数证明不等式、不等式恒成立求参数的取值范围、求函数的零点等问题,重点考查函数的思想、转化的思想及分类讨论的思想.第1课时 导数方法证明不等式利用导数研究函数的单调性、极值和最值,再根据单调性来证明不等式是函数、导数、不等式综合问题中的一个难点,也是近几年高考的热点.解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是解题的关键.题型一 单变量不等式的证明考向 1 利用移项构造法证明不等式【反思感悟】单变量不等式的证明方法(1)移项法:将证明不等式 f(x)>g(x)[或 f(x)<g(x)]的问题转化为证明 f(x)-g(x)>0[或 f(x)-g(x)<0],进而构造辅助函数 h(x)=f(x)-g(x).(2)构造“形似”函数:对原不等式同解变形,如移项、通分、取对数;把不等式转化为左右两边是相同结构的式子的结构,根据“相同结构”构造辅助函数.(3)最值法:欲证 f(x)<a(a 为常数),可以证明 fmax(x)<a.【互动探究】考向 2 转化为两个函数的最值进行比较[例 2]已知 f(x)=x ln x.(1)求函数 f(x)在[t,t+2](t>0)上的最小值;【反思感悟】在需要证明的不等式中,若对不等式的变形无法转化为一个函数的最值问题,则可以借助两个函数的最值进行证明.【互动探究】题型二 双变量不等式的证明考向 1 利用换元法证明双变量不等式问题[例 3]已知函数 h(x)=x-a ln x(a∈R).(1)若 h(x)有两个零点,求 a 的取值范围;又 f(1)=0,当时,f(x)=0,所以函数 y=f(x)的大致图象如图所示,联立消参 利用方程 f(x1)=f(x2)消掉解析式中的参数 a抓商构元令 c= ,消掉变量 x1,x2 构造关于 c 的函数 h(c)用导求解 利用导数求解函数 h(c)的最小值,从而可证得结论结合所证问题,巧妙引入变量c= ,从而构造相应的函数.其解题【反思感悟】换元法构造函数证明不等式的基本思路是直接消掉参数 a,再要点为:【互动探究】3.已知函数 f(x)=ln x-ax(x>0),a 为常数,若函数 f(x)有两个零点x1,x2(x1≠x2).求证:x1x2>e2.考向 2 极值点偏移问题满足g(e2a)·g(1)<0,g(1)·g(-2a)<0,故在(e2a,1)上存在x1,在(1,-2a)上存在x2,使得g(x1)=g(x2)=0,所以a的取值范围是(-∞,-1).【反思感悟】当某一函数在其定义域上存在极值时,若极值点左右增减速度相同,则该函数图象为对称图形.若极值点左右增减速度不同,则会出现对称性消失,函数图象偏移,这种情况称为极值点偏移.近几年导数中双参问题经常出现,难度较大.破解含双参问题的关键:一是转化,即由已知条件入手,寻找双参所满足的关系式,并把含双参的不等式转化为含单参的不等式;二是巧妙构造函数,再借用导数,判断函数的单调性,从而求其最值.【互动探究】4.(2022 年江苏南通模拟)已知函数 f(x)=aex-x,a∈R.若 f(x)有两个不同的零点x1,x2.证明:x1+x2>2.因为x<1,所以1-x>0,2-x>x,所以e2-x>ex,即e2-x-ex>0,所以H′(x)>0,所以H(x)在(-∞,1)上单调递增.所以H(x1)即有g(x1)所以x1+x2>2.题型三 活用两个与指对数相关的经典不等式两个与指对数相关的经典不等式(1)对数形式:x≥1+ln x(x>0),当且仅当x=1时,等号成立.(2)指数形式:ex≥x+1(x∈R),当且仅当x=0时,等号成立.进一步可得到一组不等式链:ex>x+1>x>1+ln x(x>0,且x≠1).()ABCD即{x|x>-1,且 x≠0},所以排除选项 D.当 x>0 时,由经典不等式 x>1+ln x(x>0),以 x+1 代替 x,得 x>ln (x+1)(x>-1,且 x≠0),所以 ln (x+1)-x<0(x>-1,且 x≠0),即 x>0 或-1<x<0时均有 f(x)<0,排除 A,C,易知 B 正确.答案:B【互动探究】所以f(x)的单调递增区间是(0,a)和(2,+∞),单调递减区间为(a,2).若a=2,x∈(0,+∞),f′(x)≥0,f(x)的单调递增区间是(0,+∞),无单调递减区间.若a>2,当x∈(0,2)∪(a,+∞)时,f′(x)>0;当x∈(2,a)时,f′(x)<0,所以f(x)的单调递增区间是(0,2)和(a,+∞),单调递减区间为(2,a).综上所述,当a≤0时,f(x)的单调递增区间是(2,+∞),单调递减区间为(0,2);当0当a=2时,f(x)的单调递增区间是(0,+∞),无单调递减区间;当a>2时,f(x)的单调递增区间是(0,2)和(a,+∞),单调递减区间为(2,a).当x∈(-∞,0)时,h′(x)<0,h(x)单调递减,x∈(0,+∞)时,h′(x)>0,h(x)单调递增,所以h(x)≥h(0)=0,即ex-x-1≥0,当且仅当x=0时取得等号,令ln x+x+1代替x得到eln x+x+1-(x+ln x+1)-1≥0,故原不等式得证. 展开更多...... 收起↑ 资源预览