资源简介 2024-2025 6 6.下列命题:学年第二学期 月份阶段性检测①经过直线外一点,有且只有一条直线与这条直线平行②在同一平面内,过一点有且只有一条直线与已知直线垂直七年级数学试题③两条直线被第三条直线所截,内错角相等注意事项: ④所有实数都可以用数轴上的点表示. 其中真命题的个数是( )A.1 B.2 C.3 D.41.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的姓 7.如图所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块名、准考证号填涂在答题卡上。 巧克力的质量是( )2.回答第Ⅰ卷时,选出每小题答案后,用 2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。3.回答第Ⅱ卷时,将答案写在答题卡上。写在本试卷上无效。 A.20g B.25g C.15g D.30g第Ⅰ卷 8.如图是某个一元一次不等式的解集在数轴上的表示,若该不等式恰有两个非负整数解,则 a的取值范围是( )一、选择题:本题共 10 小题,每小题 4 分,共 40 分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列四组图形中,不能视为由一个基本图形通过平移得到的是( )A.2 ≤ a<3 B.1A. B. C. D. 9.如下图,AB / /DE,BC⊥CD,则以下说法中正确的是( )2.下列实数中,无理数是( ) A. α,β的角度数之和为定值 B. α随β增大而增大A 8 B 22. . C.0 D. 167 C. α,β的角度数之积为定值 D. α随β增大而减小3.如图,小手盖住的点的坐标可能是( )A. ( 2, 3) B. ( 2,3) C. (2,3) D. (2, 3)4.若 < ,则下列不等式不一定成立的是( ) 第9题图 第10题图A.a-1-2b C.a+b<2b D. 2 < 2 10. 如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),5.已知二元一次方程2x﹣3y=4,用含x的代数式表示y,正确的是( ) 第2次接着运动到点(2,0),第3次接着运动到点(3,2),……,按这样的运动规律,经过第2025A. x 4 3y B. x 4 3y C. y 2x 4 D. y 2x 4 次运动后,动点P的坐标是( )2 2 3 3A.(2024,1) B. (2024,0) C.(2025,1) D.(2025,2){#{QQABZYQkxwA40AZACR7aAQUcCAsQsIESJSoGgQAUKAwLABNIBAA=}#}Ⅱ 5x 1 3 x 1 ①第 卷 (2)解不等式组: x 1 ,并写出它的所有整数解. 4 2 x 1 ②二、填空题:本题共 6 小题,每小题 4 分,共 24 分。 211.已知2x+1的平方根为±5,则﹣5x﹣4的立方根是 .12.如图,已知直线a//b,∠1=25°,∠2= 68°,则∠A 的度数为 °.19.(10分)(1)已知3a 3的平方根为 3,a+2b的算术平方根为 4 ,求b-3a的平方根.(2)求x的值:4 2 25 = 013.点A(3m﹣1,2m)位于第一、三象限的角平分线上,则m= .14.学校开展以环保为主题的演讲活动,计划拿出 120元钱全部用于购买甲、乙两种奖品(两种奖品都购买),用来奖励表现突出的学生.已知甲种奖品每件 15元,乙种奖品每件 10元,20.(10分)在平面直角坐标系中,已知点 A( 4, 3)、B( 2, 3)则购买方案有 种. ax by 2 x 3 x 2 cx 7y 8 y 2 15.解方程组 时,甲同学正确解得 ,乙同学因把 c写错而得到 y 1 ,则7a 7b 3c ______________.16.关于 x,y的二元一次方程 kx-y=1,当 x=2时,y=5.(1)k的值是 ;(2)当x<2时,对于每一个x的值,关于x的不等式x+n>kx-1总成立,则n的取值范围是三、解答题:本题共 8 小题,共 86分。 1 x3 y 1 2 2 1 2025 81 2 3 3 8 (1)描出 A、B两点的位置,并连结 AB、AO、BO.17.(8分)(1)计算: (2)解方程组: 2x y 3(2)把△AOB向右平移 4个单位,再向上平移 2个单位,画出平移后的△A′O′B′,并写出各点的坐标.1 2 ≥ 8①18.(10 分)( )解不等式组 并将解集在数轴上表示出来. (3)求△AOB的面积.3( 1) + 9 ≥ 5 ②{#{QQABZYQkxwA40AZACR7aAQUcCAsQsIESJSoGgQAUKAwLABNIBAA=}#}21.(10分)如图,已知 AB // CD,∠B = 40 ,CN是∠BCE的平分线,CM ⊥ CN, 24.(14 分)如图,以直角三角形 AOC的直角顶点О为原点,以OC、OA所在直线为 x轴和 y轴求∠BCM的度数. 建立平面直角坐标系,点 A 0,a ,C b,0 满足 a 2b b 2 0.22.(12分)某工厂计划生产 A,B两种产品共 10件,其生产成本和利润如下表:A种产品 B种产品(1)C点的坐标为______;A点的坐标为______.成本(万元∕件) 3 5(2)如图 1,已知坐标轴上有两动点 P、Q同时出发, P点从C点出发沿 x轴负方向以 1个单利润(万元∕件) 1 2 位长度每秒的速度匀速移动,Q点从O点出发以 2个单位长度每秒的速度沿 y轴正方向移动,(1)若工厂计划获利 14万元,问 A,B两种产品应分别生产多少件? 点Q到达A点整个运动随之结束. AC的中点D的坐标是 1,2 ,设运动时间为 t t 0 .问:是(2)若工厂投入资金不多于 44万元,且获利多于 14万元,问工厂有哪几种生产方案?否存在这样的 t,使 S ODP S ODQ?若存在,请求出 t的值:若不存在,请说明理由.(3)在(2)条件下,哪种方案获利最大?并求最大利润.(3)如图 2,过O作OG//AC,作 AOF AOG交 AC于点F ,点E是线段OA上一动点,连CE交OF 于点H,当点E在线段OA OHC ACE上运动的过程中, 的值是否会发生变化?若不 OEC变,请直接写出它的值:若变化,请说明理由.23.(12分)阅读与思考形如x+ky=b与kx+y=b的两个关于x,y的方程互为“共轭二元一次方程”,其中k≠1. + = 由这两个方程组成的方程组 + = ,叫作“共轭方程组”,k,b称为“共轭系数”.(1) x + 3直接写出方程 y = 5的“共轭二元一次方程”,并求出它们组成的“共轭方程组”的解.2 + (2 5 ) = 4(2)若关于x,y的二元一次方程组 (1 2 ) + = 5 ,为“共轭方程组”,求此“共轭方程组”的共轭系数.{#{QQABZYQkxwA40AZACR7aAQUcCAsQsIESJSoGgQAUKAwLABNIBAA=}#} 展开更多...... 收起↑ 资源预览