资源简介 中小学教育资源及组卷应用平台中考数学考前冲刺 尺规作图一.选择题(共10小题)1.(2020 襄阳)如图,Rt△ABC中,∠ABC=90°,根据尺规作图的痕迹判断以下结论错误的是( )A.DB=DE B.AB=AE C.∠EDC=∠BAC D.∠DAC=∠C2.(2019 河北)根据尺规作图的痕迹,可用直尺成功找到三角形外心的是( )A. B.C. D.3.(2019 长春)如图,在△ABC中,∠ACB为钝角.用直尺和圆规在边AB上确定一点D.使∠ADC=2∠B,则符合要求的作图痕迹是( )A. B.C. D.4.(2024秋 大东区期末)下列画图的语句中,正确的为( )A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.过直线AB外一点画一条直线和直线AB相交5.(2019秋 缙云县期末)下列尺规作图分别表示:①作一个角的平分线;②作一个角等于已知角;③作一条线段的垂直平分线.其中作法正确的是( )A.①② B.①③ C.②③ D.①②③6.(2015 三明)如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,下列结论不一定正确的是( )A.AD=BD B.BD=CD C.∠A=∠BED D.∠ECD=∠EDC7.(2024 烟台)某班开展“用直尺和圆规作角平分线”的探究活动,各组展示作图痕迹如下,其中射线OP为∠AOB的平分线的有( )A.1个 B.2个 C.3个 D.4个8.(2023 河北)综合实践课上,嘉嘉画出△ABD,利用尺规作图找一点C,使得四边形ABCD为平行四边形.(1)~(3)是其作图过程.(1)作BD的垂直平分线交BD于点O;(2)连接AO,在AO的延长线上截取OC=AO;(3)连接DC,BC,则四边形ABCD即为所求.在嘉嘉的作法中,可直接判定四边形ABCD为平行四边形的条件是( )A.两组对边分别平行 B.两组对边分别相等C.对角线互相平分 D.一组对边平行且相等9.(2016 杭州模拟)如图,用尺规作出∠OBF=∠AOB,所画痕迹是( )A.以点B为圆心,OD为半径的弧B.以点C为圆心,DC为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DC为半径的弧10.(2023秋 永吉县期末)已知∠AOB,求作射线OC,使OC平分∠AOB,那么作法的合理顺序是( )①作射线OC;②在射线OA和OB上分别截取OD、OE,使OD=OE;③分别以D、E为圆心,大于DE的长为半径在∠AOB内作弧,两弧交于点C.A.①②③ B.②①③ C.②③① D.③①②二.填空题(共5小题)11.(2020 潍坊)如图,在Rt△ABC中,∠C=90°,∠B=20°,PQ垂直平分AB,垂足为Q,交BC于点P.按以下步骤作图:①以点A为圆心,以适当的长为半径作弧,分别交边AC,AB于点D,E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧相交于点F;③作射线AF,与直线PQ交于点M.若AF与PQ的夹角为α,则α= °.12.(2018 山西)如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于CD长为半径作弧,两弧在∠NAB内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为 .13.(2017 邵阳)如图所示,已知∠AOB=40°,现按照以下步骤作图:①在OA,OB上分别截取线段OD,OE,使OD=OE;②分别以D,E为圆心,以大于DE的长为半径画弧,在∠AOB内两弧交于点C;③作射线OC.则∠AOC的大小为 .14.(2019 本溪)如图,BD是矩形ABCD的对角线,在BA和BD上分别截取BE,BF,使BE=BF;分别以E,F为圆心,以大于EF的长为半径作弧,两弧在∠ABD内交于点G,作射线BG交AD于点P,若AP=3,则点P到BD的距离为 .15.(2019 宁夏)如图,在Rt△ABC中,∠C=90°,以顶点B为圆心,适当长度为半径画弧,分别交AB,BC于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D.若∠A=30°,则 .三.解答题(共5小题)16.(2025 鼓楼区校级一模)如图,已知△ABC(AC<AB<BC),请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)在边BC上确定一点P,使得PA+PC=BC;(2)作出一个△DEF,使得:①△DEF是直角三角形;②△DEF的周长等于边BC的长.17.(2008 黔东南州)如图,学校有一块三角形空地(即△ABC),现准备将它分成面积相等的两块地,栽种不同的花草,请你把它分出来.(作图题要求:尺规作图,保留作图痕迹,不写作法,不要求证明).18.(2016春 太原期末)作图题(要求:用尺规作图,保留作图痕迹,不写作法和证明)已知:(如图)线段a和∠α,求作:△ABC,使AB=AC=a,∠A=∠α.19.(2018 常州)(1)如图1,已知EK垂直平分BC,垂足为D,AB与EK相交于点F,连接CF.求证:∠AFE=∠CFD.(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法);②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?20.(2018 无锡)如图,平面直角坐标系中,已知点B的坐标为(6,4).(1)请用直尺(不带刻度)和圆规作一条直线AC,它与x轴和y轴的正半轴分别交于点A和点C,且使∠ABC=90°,△ABC与△AOC的面积相等.(作图不必写作法,但要保留作图痕迹.)(2)问:(1)中这样的直线AC是否唯一?若唯一,请说明理由;若不唯一,请在图中画出所有这样的直线AC,并写出与之对应的函数表达式.中考数学考前冲刺 尺规作图参考答案与试题解析一.选择题(共10小题)1.(2020 襄阳)如图,Rt△ABC中,∠ABC=90°,根据尺规作图的痕迹判断以下结论错误的是( )A.DB=DE B.AB=AE C.∠EDC=∠BAC D.∠DAC=∠C【考点】作图—基本作图.【专题】作图题;应用意识.【答案】D【分析】证明△ADE≌△ADB即可判断A,B正确,再根据同角的补角相等,证明∠EDC=∠BAC即可.【解答】解:由作图可知,∠DAE=∠DAB,∠DEA=∠B=90°,∵AD=AD,∴△ADE≌△ADB(AAS),∴DB=DE,AB=AE,∵∠AED+∠B=180°∴∠BAC+∠BDE=180°,∵∠EDC+∠BDE=180°,∴∠EDC=∠BAC,故A,B,C正确,故选:D.【点评】本题考查作图﹣基本作图,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.(2019 河北)根据尺规作图的痕迹,可用直尺成功找到三角形外心的是( )A. B.C. D.【考点】作图—基本作图;三角形的外接圆与外心.【专题】作图题.【答案】C【分析】根据三角形外心的定义,三角形外心为三边的垂直平分线的交点,然后利用基本作图和选项进行判断.【解答】解:三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了三角形的外心.3.(2019 长春)如图,在△ABC中,∠ACB为钝角.用直尺和圆规在边AB上确定一点D.使∠ADC=2∠B,则符合要求的作图痕迹是( )A. B.C. D.【考点】作图—复杂作图.【专题】作图题.【答案】B【分析】由∠ADC=2∠B且∠ADC=∠B+∠BCD知∠B=∠BCD,据此得DB=DC,由线段的中垂线的性质可得答案.【解答】解:∵∠ADC=2∠B且∠ADC=∠B+∠BCD,∴∠B=∠BCD,∴DB=DC,∴点D是线段BC中垂线与AB的交点,故选:B.【点评】本题主要考查作图﹣复杂作图,解题的关键是掌握三角形外角的性质、中垂线的性质及其尺规作图.4.(2024秋 大东区期末)下列画图的语句中,正确的为( )A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.过直线AB外一点画一条直线和直线AB相交【考点】作图—尺规作图的定义.【专题】常规题型.【答案】D【分析】根据直线、射线、线段的性质即可一一判断;【解答】解:A、错误.直线没有长度;B、错误.射线没有长度;C、错误.射线有无限延伸性,不需要延长;D、正确.故选:D.【点评】本题考查作图﹣尺规作图,解题的关键是熟练掌握基本概念,属于中考基础题.5.(2019秋 缙云县期末)下列尺规作图分别表示:①作一个角的平分线;②作一个角等于已知角;③作一条线段的垂直平分线.其中作法正确的是( )A.①② B.①③ C.②③ D.①②③【考点】作图—基本作图.【专题】作图题.【答案】A【分析】利用作一个角等于已知角;作一个角的平分线;作一条线段的垂直平分线的作法进而判断即可得出答案.【解答】解:①作一个角的平分线的作法正确;②作一个角等于已知角的方法正确;③作一条线段的垂直平分线,缺少另一个交点,故作法错误;故选:A.【点评】此题主要考查了基本作图,正确把握作图方法是解题关键.6.(2015 三明)如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,下列结论不一定正确的是( )A.AD=BD B.BD=CD C.∠A=∠BED D.∠ECD=∠EDC【考点】作图—基本作图;线段垂直平分线的性质;直角三角形斜边上的中线.【答案】D【分析】由题意可知:MN为AB的垂直平分线,可以得出AD=BD;CD为直角三角形ABC斜边上的中线,得出CD=BD;利用三角形的内角和得出∠A=∠BED;因为∠A≠60°,得不出AC=AD,无法得出EC=ED,则∠ECD=∠EDC不成立;由此选择答案即可.【解答】解:∵MN为AB的垂直平分线,∴AD=BD,∠BDE=90°;∵∠ACB=90°,∴CD=BD;∵∠A+∠B=∠B+∠BED=90°,∴∠A=∠BED;∵当∠A≠60°时,AC≠AD,∴EC≠ED,∴∠ECD≠∠EDC.故选:D.【点评】此题考查了线段垂直平分线的性质以及直角三角形的性质.注意垂直平分线上任意一点,到线段两端点的距离相等.7.(2024 烟台)某班开展“用直尺和圆规作角平分线”的探究活动,各组展示作图痕迹如下,其中射线OP为∠AOB的平分线的有( )A.1个 B.2个 C.3个 D.4个【考点】作图—基本作图;角平分线的定义.【专题】作图题;几何直观.【答案】D【分析】根据角平分线的定义即可得到结论.【解答】解:A:由作图痕迹可知,射线OP为∠AOB的平分线;B:由作图痕迹可知,OC=OD,OA=OB,又∵∠AOD=∠BOC,∴△ADO≌△BCO(SAS),同理可得△ACP≌△BDP(AAS),△APO≌△BPO(SSS),∴∠AOP=∠BOP,射线OP为∠AOB的平分线;C:由作图痕迹可知,∠ACP=∠AOB,CP∥OB,可得∠CPO=∠POB,又由图可知CO=CP,∴∠COP=∠CPO,∴∠POB=∠COP,射线OP为∠AOB的平分线;D:由作图痕迹可知,CO=OD,△OCD是等腰三角形,∴射线OP是CD的垂直平分线,也是∠AOB的平分线.故选:D.【点评】本题考查了作图﹣基本作图,角平分线的定义,正确地识别图形是解题的关键.8.(2023 河北)综合实践课上,嘉嘉画出△ABD,利用尺规作图找一点C,使得四边形ABCD为平行四边形.(1)~(3)是其作图过程.(1)作BD的垂直平分线交BD于点O;(2)连接AO,在AO的延长线上截取OC=AO;(3)连接DC,BC,则四边形ABCD即为所求.在嘉嘉的作法中,可直接判定四边形ABCD为平行四边形的条件是( )A.两组对边分别平行 B.两组对边分别相等C.对角线互相平分 D.一组对边平行且相等【考点】作图—复杂作图;平行四边形的判定.【专题】作图题;推理能力.【答案】C【分析】根据:“对角线互相平分的四边形是平行四边形”证明.【解答】解:由作图得:DO=BO,AO=CO,∴四边形ABCD为平行四边形,故选:C.【点评】本题考查了复杂作图,掌握平行四边形的判定定理是解题的关键.9.(2016 杭州模拟)如图,用尺规作出∠OBF=∠AOB,所画痕迹是( )A.以点B为圆心,OD为半径的弧B.以点C为圆心,DC为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DC为半径的弧【考点】作图—基本作图.【答案】D【分析】根据作一个角等于已知角的作法进行解答即可.【解答】解:作∠OBF=∠AOB的作法,由图可知,①以点O为圆心,以任意长为半径画圆,分别交射线OA、OB分别为点C,D;②以点B为圆心,以OC为半径画圆,分别交射线BO、MB分别为点E,F;③以点E为圆心,以CD为半径画圆,交于点N,连接BN即可得出∠OBF,则∠OBF=∠AOB.故选:D.【点评】本题考查的是基本作图,熟知作一个角等于已知角的基本步骤是解答此题的关键.10.(2023秋 永吉县期末)已知∠AOB,求作射线OC,使OC平分∠AOB,那么作法的合理顺序是( )①作射线OC;②在射线OA和OB上分别截取OD、OE,使OD=OE;③分别以D、E为圆心,大于DE的长为半径在∠AOB内作弧,两弧交于点C.A.①②③ B.②①③ C.②③① D.③①②【考点】作图—基本作图.【专题】作图题;推理能力.【答案】C【分析】根据作一个角的平分线的过程即可进行判断.【解答】解:根据作一个角的平分线的过程可知:②在射线OA和OB上分别截取OD、OE,使OD=OE;③分别以D、E为圆心,大于DE的长为半径在∠AOB内作弧,两弧交于点C;①作射线OC.则射线OC平分∠AOB.所以作法的合理顺序是②③①.故选:C.【点评】本题考查了作图﹣基本作图,解决本题的关键是掌握基本作图方法.二.填空题(共5小题)11.(2020 潍坊)如图,在Rt△ABC中,∠C=90°,∠B=20°,PQ垂直平分AB,垂足为Q,交BC于点P.按以下步骤作图:①以点A为圆心,以适当的长为半径作弧,分别交边AC,AB于点D,E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧相交于点F;③作射线AF,与直线PQ交于点M.若AF与PQ的夹角为α,则α= 55 °.【考点】作图—基本作图;线段垂直平分线的性质.【专题】作图题;几何直观;运算能力.【答案】见试题解答内容【分析】根据直角三角形两锐角互余得∠BAC=70°,由角平分线的定义得∠BAM=35°,由线段垂直平分线可得△AQM是直角三角形,故可得∠AMQ+∠BAM=90°,即可求出α.【解答】解:∵△ABC是直角三角形,∠C=90°,∴∠B+∠BAC=90°,∵∠B=20°,∴∠BAC=90°﹣∠B=90°﹣20°=70°,∵AM是∠BAC的平分线,∴∠BAMBAC=35°,∵PQ是AB的垂直平分线,∴△AMQ是直角三角形,∴∠AMQ+∠BAM=90°,∴∠AMQ=90°﹣∠BAM=90°﹣35°=55°,∴α=∠AMQ=55°.故答案为:55°.【点评】此题考查了直角三角形两锐角互余,角平分线的定义,线段垂直平分线的性质,对顶角相等等知识,熟练掌握相关定义和性质是解题的关键.12.(2018 山西)如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于CD长为半径作弧,两弧在∠NAB内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为 2 .【考点】作图—基本作图;解直角三角形;平行线的性质.【专题】作图题;线段、角、相交线与平行线.【答案】见试题解答内容【分析】作高线BG,根据直角三角形30度角的性质得:BG=1,AG,可得AF的长.【解答】解:∵MN∥PQ,∴∠NAB=∠ABP=60°,由题意得:AF平分∠NAB,∴∠1=∠2=30°,∵∠ABP=∠1+∠3,∴∠3=30°,∴∠1=∠3=30°,∴AB=BF,AG=GF,∵AB=2,∴BGAB=1,∴AG,∴AF=2AG=2,故答案为:2.【点评】本题考查了平行线的性质、角平分线的基本作图、直角三角形30度角的性质,此题难度不大,熟练掌握平行线和角平分线的基本作图是关键.13.(2017 邵阳)如图所示,已知∠AOB=40°,现按照以下步骤作图:①在OA,OB上分别截取线段OD,OE,使OD=OE;②分别以D,E为圆心,以大于DE的长为半径画弧,在∠AOB内两弧交于点C;③作射线OC.则∠AOC的大小为 20° .【考点】作图—基本作图.【答案】见试题解答内容【分析】直接根据角平分线的作法即可得出结论.【解答】解:∵由作法可知,OC是∠AOB的平分线,∴∠AOC∠AOB=20°.故答案为:20°.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.14.(2019 本溪)如图,BD是矩形ABCD的对角线,在BA和BD上分别截取BE,BF,使BE=BF;分别以E,F为圆心,以大于EF的长为半径作弧,两弧在∠ABD内交于点G,作射线BG交AD于点P,若AP=3,则点P到BD的距离为 3 .【考点】作图—复杂作图;角平分线的性质;矩形的性质.【专题】线段、角、相交线与平行线;矩形 菱形 正方形.【答案】见试题解答内容【分析】首先结合作图的过程确定BP是∠ABD的平分线,然后根据角平分线的性质求得点P到BD的距离即可.【解答】解:结合作图的过程知:BP平分∠ABD,∵∠A=90°,AP=3,∴点P到BD的距离等于AP的长,为3,故答案为:3.【点评】考查了尺规作图的知识及角平分线的性质、矩形的性质等知识,解题的关键是根据图形确定BP平分∠ABD.15.(2019 宁夏)如图,在Rt△ABC中,∠C=90°,以顶点B为圆心,适当长度为半径画弧,分别交AB,BC于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D.若∠A=30°,则 .【考点】作图—基本作图;角平分线的性质;含30度角的直角三角形.【专题】作图题.【答案】见试题解答内容【分析】利用基本作图得BD平分∠ABC,再计算出∠ABD=∠CBD=30°,所以DA=DB,利用BD=2CD得到AD=2CD,然后根据三角形面积公式可得到的值.【解答】解:由作法得BD平分∠ABC,∵∠C=90°,∠A=30°,∴∠ABC=60°,∴∠ABD=∠CBD=30°,∴DA=DB,在Rt△BCD中,BD=2CD,∴AD=2CD,∴.故答案为.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).三.解答题(共5小题)16.(2025 鼓楼区校级一模)如图,已知△ABC(AC<AB<BC),请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)在边BC上确定一点P,使得PA+PC=BC;(2)作出一个△DEF,使得:①△DEF是直角三角形;②△DEF的周长等于边BC的长.【考点】作图—复杂作图.【专题】作图题.【答案】见试题解答内容【分析】(1)作AB的垂直平分线,交BC于点P,则点P即为所求;(2)在BC上取点D,过点D作BC的垂线,在垂线上取点E使DE=DB,连接EC,作EC的垂直平分线交BC于点F;则Rt△DEF即为所求.【解答】解:(1)如图,作AB的垂直平分线,交BC于点P,则点P即为所求;(2)如图,①在BC上取点D,过点D作BC的垂线,②在垂线上取点E使DE=DB,连接EC,③作EC的垂直平分线交BC于点F;∴Rt△DEF即为所求.【点评】本题主要考查了复杂作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.17.(2008 黔东南州)如图,学校有一块三角形空地(即△ABC),现准备将它分成面积相等的两块地,栽种不同的花草,请你把它分出来.(作图题要求:尺规作图,保留作图痕迹,不写作法,不要求证明).【考点】作图—应用与设计作图.【专题】作图题;压轴题.【答案】见试题解答内容【分析】作BC边上的中线,即可把△ABC分成面积相等的两块地.【解答】解:作图如下:.【点评】此题主要考查三角形中线的作法以及等底等高的知识点.18.(2016春 太原期末)作图题(要求:用尺规作图,保留作图痕迹,不写作法和证明)已知:(如图)线段a和∠α,求作:△ABC,使AB=AC=a,∠A=∠α.【考点】作图—基本作图.【答案】见试题解答内容【分析】可做∠A=∠α,然后在∠A的两边上分别截取AC=AB=a,连接BC即可.【解答】解:【点评】本题考查作图﹣基本作图,用到的知识点为:边角边可判定两三角形全等;注意先画一个角等于已知角.19.(2018 常州)(1)如图1,已知EK垂直平分BC,垂足为D,AB与EK相交于点F,连接CF.求证:∠AFE=∠CFD.(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法);②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?【考点】作图—复杂作图;线段垂直平分线的性质;直角三角形斜边上的中线.【专题】作图题.【答案】见试题解答内容【分析】(1)只要证明FC=FB即可解决问题;(2)①作点P关于GN的对称点P′,连接P′M交GN于Q,连接PQ,点Q即为所求.②结论:Q是GN的中点.想办法证明∠N=∠QMN=30°,∠G=∠GMQ=60°,可得QM=QN,QM=QG;【解答】(1)证明:如图1中,∵EK垂直平分线段BC,∴FC=FB,∴∠CFD=∠BFD,∵∠BFD=∠AFE,∴∠AFE=∠CFD.(2)①作点P关于GN的对称点P′,连接P′M交GN于Q,连接PQ,点Q即为所求.理由:∵GN垂直平分PP′,∴QP′=QP,∠KQP′=∠KQP,∵∠GQM=∠KQP′,∴∠GQM=∠PQK,∴点P即为所求.②结论:Q是GN的中点.理由:设PP′交GN于K.∵∠G=60°,∠GMN=90°,∴∠N=30°,∵PK⊥KN,∴PK=KP′PN,∴PP′=PN=PM,∴∠P′=∠PMP′,∵∠NPK=∠P′+∠PMP′=60°,∴∠PMP′=30°,∴∠N=∠QMN=30°,∠G=∠GMQ=60°,∴QM=QN,QM=QG,∴QG=QN,∴Q是GN的中点.【点评】本题考查作图﹣复杂作图、线段的垂直平分线的性质、直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(2018 无锡)如图,平面直角坐标系中,已知点B的坐标为(6,4).(1)请用直尺(不带刻度)和圆规作一条直线AC,它与x轴和y轴的正半轴分别交于点A和点C,且使∠ABC=90°,△ABC与△AOC的面积相等.(作图不必写作法,但要保留作图痕迹.)(2)问:(1)中这样的直线AC是否唯一?若唯一,请说明理由;若不唯一,请在图中画出所有这样的直线AC,并写出与之对应的函数表达式.【考点】作图—复杂作图;待定系数法求一次函数解析式.【专题】作图题.【答案】见试题解答内容【分析】(1)①作线段OB的垂直平分线AC,满足条件,②作矩形OA′BC′,直线A′C′,满足条件;(2)分两种情形分别求解即可解决问题;【解答】(1)解:如图△ABC即为所求;(2)解:这样的直线不唯一.①作线段OB的垂直平分线AC,满足条件,此时直线的解析式为yx.②作矩形OA′BC′,直线A′C′,满足条件,此时直线A′C′的解析式为yx+4.【点评】本题考查作图﹣复杂作图,待定系数法等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)21世纪教育网(www.21cnjy.com) 展开更多...... 收起↑ 资源预览