2025年河北省初中学业水平模拟测评数学麒麟卷(三)(图片版,含答案)

资源下载
  1. 二一教育资源

2025年河北省初中学业水平模拟测评数学麒麟卷(三)(图片版,含答案)

资源简介

2025年河北省初中学业水平模拟测评
数学麒麟卷(三)
总分
评卷人
(试卷页数:8页,考试时间:120分钟,总分:120分)
选择题涂卡区
考生禁填:缺考考生由监考员用黑色中性笔填写准考证号并填涂右边的缺考标记。
注意事项:
1.使用考试专用扁头2B涂卡铅笔填涂,或将普通2B
铅笔削成扁鸭嘴状填涂。
2修改时,请先用橡皮擦干净,再重新填涂,不得
条形码粘贴处
使用修正带或涂改液。
3.填涂的正确方法:■
错误方法:刀 白
1回
4 D D
7国回
10四 网D
2 B
5IB网)
8A回
11团E画 回
3团回网回
6团 回回
9画网D
12AI网
得分
评卷人

选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的

四个选项中,只有一项是符合题目要求的)
1.如图1,嘉嘉站在教学楼的点P处看对面楼里祺淇的俯角为20°,则淇祺可能在
A.点A处
B.点B处
C.点C处
D.点D处
2.下列选项中结果最小的是…
A.-2
B.(-2)0
C.-(-2)
D.(-2)
图1
3.一个单项式的3倍为-27xy,则该单项式为…(
)
A.-3x'y
B.-9xy
C.9x'y
D.-9x'
4.嘉嘉想知道直线1,与直线1,所夹锐角的度数大小,她将含

30°角的三角板ABC按图2所示位置放置,则直线(,与直线
,所夹锐角的度数为…(
)
A.10°
B.15
C.20°
D.30°
图2
5.关于x的方程ax2+bx-a=0(a≠0)根的情况是…
A.有两个不相等的实数根
B.没有实数根
C.有两个相等的实数根
D.无法确定
6.嘉嘉和淇淇玩“棒打老虎鸡吃虫”的游戏,游戏规则为:两人同时随机喊出棒子、老虎、
鸡、虫中的一个,规定棒子打老虎,老虎吃鸡,鸡吃虫,虫吃棒子定胜负;若两人同时喊出
棒子与鸡,老虎与虫或喊出相同的,则不分胜负.若嘉嘉喊出棒子,则这局不分胜负的概率
★★数学麒膦卷(三)第1页,共8页★★
CS扫描全能王
3亿人都在用的扫描ApP
为…
A是
B.
c是
D
7.嘉嘉查看自已初中三年的立定跳远成绩,发现初二成绩的加初一成绩等于初三成绩,初一
成绩的专加初二成绩等于初三成绩,已知她初三成绩为209cm,设初一成绩为x,初二成绩为
y,则下列说法错误的是…
…(
A.可列方程
x+=209
方x+y=209
B.16x=15y
C.嘉嘉初一立定跳远成绩为150cm
D.初三比初二提高的成绩是初二比初一提高的成缋的3倍
8.下面都是由7个棱长为1的小正方体木块粘在一起的几何体,它们的左视图不是中心对称图形
的是…
A.
正面
正面
正面
正面
9.某正方体精密元件的棱长为5×102cm,则它的体积为…(
A.1.25×10cm
B.1.25×10cm
C.2.5×103cm3
D.1.25×105cm
10.如图3,在不完整的数轴上,点M对应的数是1,点A对应的数是a,
点A向右移动3个单位长度
到点B,点C与点B关于点M对称,则点C对应的数为…
.............
A.-a+3
B.-a-2
C.-a-3
D.-a-1
11.如图4,点B是线段AC上的一点,AB=3,BC=4.将线段AB绕点B顺时针旋转,得到线段
AB,连接A'C.当△ABC的外心在其外部时,则AC的长不可能为…(
A.2
B.4.9
C.6
D.35
M
图3
图4
图5-1
图5-2
12.如图5-1,⊙0的直径为0.5,点A,B,C为圆周的三等分点,过点A,B,C作⊙O的直径并
延长到点D,E,F,使得AD=BE=CF=1.如图5-2,过点A,B,C分别作F,FD,DE,
三条弧围成封闭图形,长度为1的线段MW的两端点在该封闭图形上运动,MW的中点随之在
⊙0上运动.得出以下四个结论:
①点M在上时,点在元上:②aD的长度为3豆;③道屿OO湘切于点C时,mLOC
=文;④O0经过MN的四等分点时,O到MN的距离为
8
其中正确的结论个数是…
A.1个
B.2个
C.3个
D.4个
★★数学麒游卷(三)·第2页,共8页★★
CS扫描全能王
3亿人都在用的扫描ApP2025 年河北省初中学业水平模拟测评
数学 麒麟卷(三) 参考答案
一、选择题(本大题共 12 个小题,每小题 3 分,共 36 分)
1-5 CADCA 6-10 BCDBD 11-12 BC
二、填空题(本大题共 4 个小题,每小题 3 分,共 12 分)
1
13.
2025
14. ①或⑥
15. 2
【解析】k=4 时,过(1,4)(4,1)(2,2),k>4 时整点开始平分在图象两侧
k=6 时,过(2,3)(3,2),k<6 时整点开始平分在图象两侧
∴4<k<6,即 n=6,m=4,n-m=2
16. (1)45°(2 分)
(2) 2 6- 2 2 (1 分)
【解析】(1)∵∠ABC=120°,∠QBC=90°
∴∠ABQ=30°
AB=BC=BQ,∴∠BAQ=75°,∵∠BAF=120°,∴∠FAQ=45°
(2)连接 QF,过 Q作 QG⊥AF于 G
∵∠ABQ=30°,∠ABF=30°,∴点 Q在线段 BF上
∵∠FAQ=45°,∠ABF=30°,设 QG=x,则 AG=x,GF= 3 x
4
( 3 +1)x=4,x= =2( 3 -1)=2 3 -2,AQ= 2 x=2 6 -23 2 1
三、解答题(本大题共 8 个小题,共 72 分)
17. 解:(1)(5+3-4)×(-2)=4×(-2)=-8······················································ 4 分
(2)设淇淇说的数为 x,则
-2(x-4)+3>0
11
解得 x<
2
∴淇淇开始说出的数的最大整数为 5·········································································· 7 分
1 x
18. 解:(1) =1,则 x+3+x(x-3)=x2-9
x 3 x 3
-2x=-12,解得 x=6
经检验,x=6 是原分式方程的解···············································································3 分
a x
(2)①∵ =1
x 3 x 3
∴a(x+3)+x(x-3)=x2-9
3a 9
解得 x=- ···································································································· 6 分
a 3
②2,4,5,6,9,12,21 其中一个均可···································································· 8 分
3a 9 3(a 3) 18 18
【解析】由(2)①得 x= = =-3-
a 3 a 3 a 3
★★数学 麒麟卷(三) 参考答案 第 1 页 共 6 页★★
∵a>0
∴a-3 可取-2,-1,1,2,3,6,9,18
∵a≠1
∴a的值可以取 2,4,5,6,9,12,21
19. 解:(1)6÷20%=30(人),参与调查的学生总数为 30 人········································1 分
30-1-3-6-9=11(人)
条形统计图如下:
······················································································· 3 分
(2)5 4········································································································5 分
x 1 1 2 3 3 6 4 9 5 11 116(3) ≈3.87(分)············································7 分
30 30
∴班委会工作的评定等级为优秀··············································································· 8 分
20. 解:(1)如下图所示
(答案不唯一)······························································· 3 分
(2)如下图所示
(答案不唯一)·································································· 6 分
(3)如下图所示
(答案不唯一)····································································8 分
21. 解:(1)由题意得:x=130
★★数学 麒麟卷(三) 参考答案 第 2 页 共 6 页★★
若 P=100,y=100×1+1.2×(130-100)=136(元)
若 P=150,y=130×1.2-1.2×(150-130)=132(元)
∵136>132
∴目标件数定 100 件合适·························································································3 分
(2)①∵150<x≤200
∴当 P=150 时,y=1.2×150+1.5×(x-150)=1.5x-45
当 P=200 时,y=1.5x-1.5×(200-x)=3x-300······················································ 5 分
②当 1.5x-45=3x-300 时,解得 x=170
∴生产 170 件时,P=150 或 P=200 工资一样····························································· 7 分
(3)他昨天生产了 140 件······················································································· 9 分
【解析】设他昨天生产了 x件,则今天生产了(x+24)件
由题意得:①若 x>150,x+24>150
今天的工资为 1.2×150+1.5×(x+24-150)
昨天的工资为 1.2×150+1.5×(x-150)
24×1.5=36≠45
∴不成立
②若 x<150,x+24<150
今天的工资为 1.2(x+24)-1.2×[150-(x+24)]
昨天的工资为 1.2x-1.2×(150-x)
180-122.4=57.6≠45
∴不成立
③x<150,x+24>150
今天的工资为 1.2×150+1.5×[(x+24)-150]=1.5x-9
昨天的工资为 1.2x-1.2×(150-x)=2.4x-180
1.5x-9=2.4x-180+45
解得 x=140
∴他昨天生产了 140 件
1
22. 解:(1)由题意得 OC⊥AB,AE= AB=12(dm)
2
在 Rt△AOE中,OE= OA2 AE 2 = 132 122 =5(dm)
又 OD=23dm
∴ED=OD-OE=23-5=18(dm)
即点 A到地面 MN的距离为 18dm··············································································3 分
AE 12 12
(2)∵sin∠AOE= = ,sin68°=
OA 13 13
∴∠AOE=68°
⌒ 68 π 13 221AC的长为 = π···················································································· 5 分
180 45
(3)①如图,直线 l即为所求
★★数学 麒麟卷(三) 参考答案 第 3 页 共 6 页★★
····························································································· 7 分
②FD=4.5dm········································································································ 9 分
【解析】延长 OD与直线 l相交于点 G
OE OA
cos∠AOG= =
OA OG
5 13 169
∴ = ,OG= (dm)
13 OG 5
∵OD=23dm
169 54
∴DG= -23= (dm)
5 5
∵∠G=∠OAE
FD OE
∴tanG= =tan∠OAE=
DG AE
54
OE·DG 5
∴FD= = 5 =4.5(dm)
AE 12
23. 解:(1)由题意得 C(0,4)
∵抛物线过点 C(0,4)
1
∴4=- (0-2)2+n
4
n=5
1 1
∴抛物线解析式为 y=- (x-2)2+5=- x2+x+4·················································3 分
4 4
1
(2)直线 AB的解析式为 y=- x+3·······································································4 分
3
1 2 1令- x+x+4=- x+3
4 3
2
解得 x=6 或 x=- (舍)
3
1
当 x=6 时,y=- x+3=1
3
∴D(6,1)·········································································································6 分
1 1
(3)∵抛物线为 y=- x2+x+4,直线 AB为 y=- x+3
4 3
1 2 1 1 4∴弹力球到坡面的铅垂高度为(- x+x+4)-(- x+3)=- x2+ x+1
4 3 4 3
1
当- x2
4 7 4
+ x+1= 时,可得 3x2-16x+16=0, 解得 x=4 或 x=
4 3 3 3
4
∴弹力球横坐标的范围为 ≤x≤4············································································ 9 分
3
★★数学 麒麟卷(三) 参考答案 第 4 页 共 6 页★★
4
(4)AE的水平距离为 米····················································································11 分
3
【解析】由题意得,AE=PQ且 AE// PQ
设 AE的水平距离为 3t,则 AE的垂直距离为 t
∵A(0,3)∴E(3t,3-t)
∵P(2,5),∴Q(2+3t,5-t)
1
∵Q(2+3t,5-t)在 y=- (x-2)2+5 的图象上
4
1
∴5-t=- (2+3t-2)2+5
4
9
t2-t=0
4
4
t= 或 t=0(舍去)
9
4
3t=
3
4
∴AE的水平距离为 米
3
24. 解:(1)①10 12.5······················································································2 分
②∵CD=DF,∴当 CF=CD时,△CDF为等边三角形
CE CE
∠CDE=30°,tan∠CDE= = = 3
CD 6 3
∴CE= 2 3 ··········································································································5 分
③过点 F作 AD的垂线交 AD于点 M,交 BC于点 N,设 FN=m,NE=n
1
∵EC= BC=4
2
∴EF=EC=4,DF=CD=6
∵△FNE∽△DMF
NE FN EF
∴ = =
MF DM FD
n m 4
∴ = =
6 m 4 n 6
6n 24 4m
整理,得
6m 16 4n
48 48
解得 m= ,即点 F到 BC的距离为 ····································································8 分
13 13
(2)① 225 18 23 或 225 18 23 ·········································································10 分
52 52
【解析】过点 P作 PK⊥AD于点 K
∵△RDQ∽△QKP
QD QR 6
∴ = =
PK PQ 8
设 QD=3x,则 KP=4x
∵∠A=∠BDC
★★数学 麒麟卷(三) 参考答案 第 5 页 共 6 页★★
PK BC 8
tanA= = = ,∴AK=3x
AK DC 6
∴KQ = AD-AK-QD=12.5-6x
∵KQ2+KP2=PQ2
∴(12.5-6x)2+(4x)2=82
52x2-150x+92.25=0
解得 x= 75 6 23 或 75 6 23
52 52
∴QD=3x= 225 18 23 或 225 18 23
52 52
②点 A与点 R的最大距离为 5+ 97 ········································································12 分
【解析】作△APQ的外接圆 O,过 O作 OI⊥PQ于点 I,连接 OA,OP,OR
1
∵∠IOP=∠PAQ,IQ= PQ=4
2
∴OP=OA=5,OI=3,OR= (OI QR)2 IQ 2 = (3 6)2 42 = 97
A,O,R在同一直线上时点 A与点 R的距离最大,最大距离为 5+ 97
★★数学 麒麟卷(三) 参考答案 第 6 页 共 6 页★★

展开更多......

收起↑

资源列表