【轻质减负】北师大七下6.4.1用图象表示变量之间的关系-曲线型图象(课件+教案)

资源下载
  1. 二一教育资源

【轻质减负】北师大七下6.4.1用图象表示变量之间的关系-曲线型图象(课件+教案)

资源简介

《6.4.1用图象表示变量之间的关系-曲线型图象》教学设计
—— 郑州外国语教育集团朗悦校区 陈芳芳
一、课型
新授课
二、内容分析
(一)课标要求
《义务教育数学课程标准(2022年版)》理解图象表示变量关系的意义:学生要深刻理解在具体情境中,曲线型图象能够直观呈现两个变量之间的对应关系,明晰图象中的点如何反映变量的取值组合,即给定图象上一点,能准确说出对应的自变量和因变量的值。
教材解读
本节课选自北师大版第六章第四节第1课时。结合具体情境,让学生明白图象上的点代表了自变量和因变量的特定取值组合。例如在温度随时间变化的曲线型图象中,某一点的横坐标表示时间,纵坐标表示对应的温度,通过点的位置可以清晰地了解在某一时刻的温度状况,从而使学生学会从图象中读取具体信息,理解变量之间的对应关系。本节课的曲线型图象是对变量关系表示方法的进一步拓展和深化,是在表格和关系式基础上,从直观图形的角度来呈现变量关系,使学生对变量关系的认识更加全面和深入。同时,学生在七年级上学期学习的折线统计图等知识,也为理解曲线型图象的形成和特点奠定了基础。本节课能使学生初步感受函数思想,为以后学习函数的概念、性质和图象等知识打下坚实的基础。通过对曲线型图象的学习,学生可以提前体会到函数中自变量与因变量之间的对应关系,以及函数图象的直观性和重要性,有助于后续顺利过渡到函数的系统学习,也为高中阶段进一步研究函数的性质和应用做好准备。
三、学情分析
1.基础知识
学生此前已对变量有了初步认知,了解到在特定变化过程中存在数值变动的量,并且掌握了用表格和关系式来呈现变量间的关系。在数学图形知识方面,学生熟悉了平面直角坐标系,知道如何在坐标系中确定点的位置,这为理解曲线型图象在坐标系中的呈现方式奠定了基础。不过,对于将变量关系以更为直观、动态的曲线型图象展现出来,他们尚缺乏深入理解和实际运用经验。从表格、关系式到曲线型图象,是从相对具体、抽象的数量关系描述,向更直观形象的图形表达转变。学生可能较难迅速理解曲线型图象上每一个点所蕴含的变量对应关系,尤其是当图象较为复杂,如涉及多条曲线或曲线变化趋势不明显时,难以将图象信息与已学的变量知识紧密结合,准确提取关键信息并加以分析。
2.行为习惯
初中学生普遍对新鲜事物充满好奇,曲线型图象这种新颖的变量表示方式易激发他们的兴趣,在课堂上能够积极参与讨论和互动。比如,当展示生活中气温随时间变化的
曲线型图象时,学生乐于发表自己对气温变化趋势的看法。然而,部分学生在讨论过程中,可能过于关注表面现象,而忽略对图象背后数学原理的深入探究,需要教师适时引导,将讨论引向深入。部分学生已具备一定自主学习意识,在教师布置任务后,能够尝试自主探索简单曲线型图象的特点。但面对复杂的实际问题,如根据股票价格波动的曲线型图象分析经济走势,学生可能由于缺乏相关背景知识和深入探究的耐心,容易出现畏难情绪,转而依赖教师或同学的帮助,自主学习能力有待进一步提升。
3.关键能力
从具体的生活情境或数学问题中抽象出曲线型图象,并概括出图象所反映的变量关系,对学生来说颇具挑战。他们习惯直观、具体的思维模式,在从实际问题中提炼出关键变量,并将变量关系转化为曲线型图象时,可能无法精准把握关键信息,遗漏重要条件,导致对图象的抽象概括不准确。
利用曲线型图象进行逻辑推理,如根据图象的变化趋势预测未来变量的取值,或通过图象特征反推变量之间的内在联系,需要学生具备较强的逻辑思维。部分学生在推理过程中,可能存在条理不清晰、步骤不严谨的问题。例如,在分析物体运动的速度 - 时间曲线型图象时,无法准确根据图象斜率的变化判断加速度的大小和方向,难以有条理地阐述推理过程。
四、学习目标
基础性目标 1.我能从图象中分析变量之间的关系,明确图象上点所表示的意义
拓展性目标 2.我能结合具体情境根据图象解答问题
挑战性目标 3.我能利用本节课知识创编或改编一道题目并解答
实施路径
基础性目标 实现路径 课前:自主完成基础性目标
课堂:学生展示基础性目标活动,学生互相补充,教师点评
拓展性目标 实现路径 课前:阅读拓展性目标材料
课堂:自主完成拓展性目标,展示分享,学生相互补充,学生互评,教师点评
挑战性目标 实现路径 课前:阅读挑战性目标材料,尝试总结
课堂:学生独立思考后,小组合作总结形式,完成挑战性目标,展示分享,教师点评
课后:补充完善,形成设计作品
六、课堂流程
流程 时间 教师活动 学生活动
明确目标 拉齐基础 1分钟 展示本节课的三层学习目标向学生交待本节课的学习任务 明确本节课的学习任务
整体出发 逐渐分化 3分钟 从生活实际出发探讨气温的变化 引入本节课知识
创设情境 基础过关 4分钟 提出基础性目标问题,及时点拨 自主探究问题,回答基础性目标问题
自主探讨 个人展评 5分钟 组织学生探究拓展性目标问题并进行及时指导,帮助汇报学生规范数学语言 自主探究拓展性目标问题,指定汇报者汇报,其他同学互相补充
合作探讨 挑战突破 12分钟 指导学生完成挑战性目标问题结论的描述,指定学生进行展讲,及时点拨,并对表现优异的学生进行表扬 学生完成挑战性目标问题结论,重点如何理清思路,互相补充,并记录不懂的问题
答疑解惑拓展能力 12分钟 组织学生展示不懂的问题,对当堂练习进行点拨 学生展示不懂的问题,完成当堂练习
对照目标 检测效果 2分钟 再次展示本节课的三层学习目标 对照本节课的基础目标和拓展性目标,检测自己的学习效果,分享目标达成度
自我小结 挑战点拨 1分钟 请学生分享课堂收获体会、点评、肯定、补充 分享课堂收获,互相补充
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
原创名校精品资源21世纪教育网独家享有版权,侵权必究(共40张PPT)
6.4.1用图象表示变量之间的关系-曲线型图象
郑州外国语教育集团朗悦校区 陈芳芳
一 学习目标
三 新知讲解
五 当堂检测
二 复习回顾
四 课堂总结
六 作业布置
学习目标
基础性目标 1.我能从图象中分析变量之间的关系,明确图象上点所表示的意义
拓展性目标
2.我能结合具体情境根据图象解答问题
挑战性目标 3.我能利用本节课知识创编或改编一道题目并解答
预备性知识
德国心理学家艾宾浩斯最早研究了记忆遗忘规律,他根据自己得到的数据描绘了一条曲线(如图所示),这就是艾宾浩斯遗忘曲线。观察图象,你能得出一天后的记忆保持量吗?
艾宾浩斯遗忘曲线
活动1(基础性目标1)
气温的变化是人们经常谈论的话题。请你根据下图,与同伴讨论某地某天气温变化情况。
活动1(基础性目标1)
(1)你能描述该地这一天气温的变化情况吗 在什么时间范围内气温下降,什么时间范围内气温上升
解:(1)3:00到15:00温度在上升
0:00到3:00、15:00到24:00温度在下降
活动1(基础性目标1)
(2)该地这一天的最低温度是多少,是在何时达到的 最高气温呢 这一天的温差是多少
(2) 3:00 达到最低温度23℃
15 : 00 达到最高温度37℃
这一天的温差是14℃
活动1(基础性目标1)
(3)图中的A点表示什么 B点呢
(3) 21:00 的温度是31℃
0:00 的温度是26℃
活动1(基础性目标1)
问题:怎样通过图象判断气温随时间变化的情况?
从左往右看,若图象上升,表明气温在 ;若图象下降,表明气温在 ;若图象与横轴平行,
则表明气温 。
升高
下降
不变
活动1(基础性目标1)
图象是我们表示变量之间关系的又一种方法,它的特点是非常直观。
活动1(基础性目标1)
在用图象表示变量之间的关系时,通常用水平方向的数轴(称为横轴)上的点表示自变量。
用竖直方向的数轴(称为纵轴)上的点表示因变量。
曲线型图象能反映出事物的变化趋势,能够很清晰地作出预判。
横轴
纵轴
活动2(拓展性目标2)
下图呈现了某年某地日出时间、日落时间的情况。
观察图象,回答下列问题:
活动2(拓展性目标2)
(1) 你能描述这一年此地日出时间和日落时间的变化情况吗
1-6月份,日出时间越来越早;
7-12月份,日出时间越来越晚。
解:(1)
1-6月份,日落时间越来越晚;
7-12月份,日落时间越来越早。
活动2(拓展性目标2)
(2) 这一年日出时间最早大约是什么时候 最晚呢 日落时间呢
(2)日出时间最早是6月份,
最晚是12月份。
日落时间最早是12月份,
最晚是6月份。
目标练习
海水受日月的引力而产生潮汐现象,早晨海水上涨叫做潮,黄昏海水上涨叫做汐,合称潮汐。 潮汐与人类的生活有着密切的联系。
目标练习
下图呈现了某港口某天从0:00时到12:00的水深情况。
观察图象,回答下列问题:
(1) 请描述这个港口这一天从0:00到12:00水深的变化情况。
解:(1)0:00到3:00水深在增加;
3:00到9:00水深在降低;
9:00到12:00水深在增加。
目标练习
下图呈现了某港口某天从0:00时到12:00的水深情况。
(2) 什么时间港口的水最深 深度约为多少 什么时间港口的水最浅 深度约为多少
(2) 3:00港口的水最深,深度约为7.5m;
9:00港口的水最浅,深度约为2.4m。
7.5
2.4
目标练习
下图呈现了某港口某天从0:00时到12:00的水深情况。
(3) A,B 两点分别表示什么 还有什么时间水的深度与A 点所表示的深度相同
解:(3)
A点表示6:00港口的水深大约是5米,
B点表示12:00时港口的水深大约是4.3米。
0:00的水深与A点表示的水深相同。
目标练习
下图呈现了某港口某天从0:00时到12:00的水深情况。
(4) 为保证安全,港口规定:只有当船底与港口水底之间的距离不少于2 m 时,货轮才能进出港口。一艘货轮载货后吃水深4 m(即船底与水面之间的距离),请你确定货轮可以进港的大致时间范围。
(4) 货轮可以进港的大致时间是1:00到5:00。
活动3(挑战性目标3)
利用本节课所学知识改编或创编一道题目并解答
课堂小结
对照学习目标检查学习效果
基础性目标 1.我能从图象中分析变量之间的关系,明确图象上点所表示的意义
拓展性目标
2.我能结合具体情境根据图象解答问题
挑战性目标 3.我能利用本节课知识创编或改编一道题目并解答
当堂检测
1.(基础性目标1)二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关.当春分、秋分时,昼夜时长大致相等;当夏至时,白昼时长最长.根据下图,下列节气中白昼时长低于11小时的是( )
A. 惊蛰 B. 小满 C. 立秋 D. 大寒
D
当堂检测
2.(基础性目标1)跨学科如图所示的是某型号光伏发电装置某天从早上6时到下午18时之间,发电功率 随时间(时)变化的图象,下列说法错误的是( )
A. 时间越接近12时,发电功率越大
B. 上午8时和下午16时,发电功率相同
C. 从早上10时到下午14时,发电功率逐渐增大
D. 发电功率超过 的时间超过8小时
C
当堂检测
3.(拓展性目标2)根据研究,人体内血乳酸浓度升高是运动后感觉疲劳的重要原因.如果血乳酸浓度降到 以下,那么运动员就基本消除了疲劳.体育科研工作者根据实验数据,绘制了一幅图象,它反映了运动员进行高强度运动后,体内血乳酸浓度随时间变化而变化,下列叙述错误的是( )
C
当堂检测
A. 运动后血乳酸浓度先升高再降低
B. 当时,两种方式下的血乳酸浓度均超过
C. 采用静坐方式放松时,运动员大约 后就能基本消除疲劳
D. 为了更快达到消除疲劳的效果,应该采用慢跑活动方式来放松
当堂检测
4.(拓展性目标2)如图,这是某市一天的气温变化图,在
这一天中,气温随着时间变化而变化,
请观察图象,回答下列问题:
(1)在这一天中(凌晨0时到深夜24时
均在内),气温在___时达到最低,最低
气温是___ ,气温在____时达到最高.
(2)上午8时的气温是____,下午14时的气温是____ .
2
8
14
14
24
当堂检测
(3)在什么范围内这天的气温在下降?
这天从2时到14时气温上升了多少?
解:在时以及 时,这天的气
温在下降;这天从2时到14时气温上升了
.
当堂检测
5.如果不复习,学习过的知识会随着时间的推移而逐渐被遗忘。德国心里学家艾宾浩斯最早研究了记忆遗忘规律,他根据自己得到的数据描绘了一条曲线(如图所示),这就是艾宾浩斯遗忘曲线。观察图象,回答下列问题:
(1)你能描述记忆保持量随时间的变化情况吗?
答:根据图象可知,人的大脑在0—2h内记忆保持量下降极快,从100%下降到40%左右;2h以后,记忆保持量下降缓慢,24h后,记忆保持量逐渐趋于平缓。
当堂检测
(2)经过2h,记忆保持了多少?
答:由图象可知,经过2h,记忆大约保持了40%。
(3) 图中A点表示的是什么?在哪个时间段内遗忘的速度最快?
答:图中A表示经过15h记忆大约保持了36%;大约在刚刚记忆的1h内遗忘得最快。
答:由图象可知,如不复习,记忆大约只能保持32%,因此,我们学习知识后要及时复习。
(4)有研究表明,如及时复习,经过一天记忆能保持98%。根据遗忘曲线,如不复习,结果又怎样?由此,你有什么感悟?
当堂检测
6.(挑战性目标3)向高为10的容器(形状如图所示)中注水,
注满为止,则水深与注水量 的关系的大致图象是( )
A. B. C. D.
D
课后作业 (可根据实际选做)
基础性作业:
1.将常温中的温度计插入一杯60 ℃ 的热水(恒温)中,温度计的读数y(℃)与时间x(min) 的关系用图象可近似表示为( )
C
课后作业 (可根据实际选做)
基础性作业:
2.如图所示的是一台自动测温记录仪记录的图象,它反映了重庆5月某天一段时间的气温T(℃)随时间t变化的情况,观察图象得到的下列信息,其中错误的是(  )
A.该段时间内最低气温为19℃
B.从6时至15时气温随着时间的推移而上升
C.该段时间内15时气温最高
D.从12时至20时,气温随着时间的推移而下降
D
课后作业 (可根据实际选做)
基础性作业:
3.在太阳和月球的影响下,海水定时涨落的现象称为海洋潮汐,涨落的水位高低称为潮位.如图是某海港某天的实时潮位图.某海港某日0时到24时的水深y(m)随时间t(h)的变化如图所示.下列从图象中得到的信息正确的是(  )
A.24时水深最高
B.两次最高水深的时间间隔12小时
C.12时的水深为8m
D.0时到12时之间水深持续上升
B
课后作业 (可根据实际选做)
拓展性作业:
4.自然环境中,空气中的含氧量受到各种因素的影响,其中以海拔的影响最为显著(如信息窗),而随着海拔的升高,大气压与海拔的关系如图所示,下列说法正确的是( )
A. 海拔越高,大气压越大
B. 当海拔为7千米时,大气压约为60千帕
C. 当大气压为60千帕时,含氧量属于缺氧
D. 当大气压为40千帕时,人无法行动
C
课后作业 (可根据实际选做)
拓展性作业:
5.如图是一只蝴蝶在飞行过程中距离地面的高度h(米)随飞行时间t(秒)的变化情况,请根据图中信息,回答下列问题.
(1)这只蝴蝶在0~2秒飞行过程中,高度最高是    米,高度最低是   米;
(2)这只蝴蝶在0~5 秒飞行过程中,最高高度与最低高度相差  米;
10
5
8
课后作业 (可根据实际选做)
拓展性作业:
6.图1中的摩天轮可抽象成一个圆,圆上一点离地面的高度y(m)与旋转时间x(min)之间的关系.如图2所示,根据图中的信息,回答问题:
课后作业 (可根据实际选做)
拓展性作业:
(1)根据图2补全表格;
(2)如表反映的两个变量中,自变量是    ,因变量是   ;
(3)在0min到3min时,随着时间x的增加,摩天轮上一点离地面的高度y的变化趋势是   ;(填“变大”或“变小”)
(4)根据图象,摩天轮的直径为    m.
旋转时间x/min 0 3 6 8 12 …
高y/m 5     5     5 …
x
y
变大
65
70
54
课后作业 (可根据实际选做)
挑战性作业:
7.请根据本节课知识改编或创编一道题目并解答。
Thanks!
https://www.21cnjy.com/recruitment/home/fine

展开更多......

收起↑

资源列表