2024-2025学年上海市普陀区六年级(下)期中数学试卷(五四学制)(含答案)

资源下载
  1. 二一教育资源

2024-2025学年上海市普陀区六年级(下)期中数学试卷(五四学制)(含答案)

资源简介

2024-2025学年上海市普陀区六年级(下)期中数学试卷(五四学制)
一、选择题(共8题,每题3分,满分24分).
1.如果,都不为零,且,那么下列比例中正确的是  
A. B. C. D.
2.下列说法中错误的是  
A.的值等于3.14
B.的值是圆周长与直径的比值
C.的值与圆的大小无关
D.是一个无限小数
3.下列各个比中,能与组成比例是  
A. B. C. D.
4.小海、小普和乐乐在篮球场上定点投篮,小海投了30次,进球12次;小普投了10球,进球4次;乐乐投了20次,进球9次.就这次的成绩,谁的投篮水平更高?  
A.小海 B.小普 C.乐乐 D.三人水平一样
5.如果扇形的半径扩大为原来的2倍,圆心角的度数缩小为原来的,那么这个扇形的面积  
A.扩大为原来的2倍 B.扩大为原来的4倍
C.缩小为原来的 D.保持不变
6.上海市普陀区真如寺古塔,建于宋代,是中国现存较为古老的砖木结构塔之一.古塔高约50米,外观七层八檐,结构精巧,历经数百年风雨依然巍然屹立,具有重要的历史和文化价值.小明在研究真如寺古塔时,决定在纸上画一张古塔的图纸.以下哪个比例尺最合适?  
A. B. C. D.
7.如图,将一个半径为的圆形纸片平均分成16份,按图示方式拼合在一起.对比变化前后的两个图形,下列说法中正确的是  
A.变化前后,图形的面积和周长都不变
B.变化前后,图形的面积和周长都增加了
C.变化前后,图形的面积不变,周长增加了
D.变化前后,图形的面积不变,周长增加了
8.如图,在△中,,,,,.将△沿着直线作顺时针方向的滚动.△到△的位置叫做“滚动了一周”,那么这个三角形在滚动了6周之后,点经过的路程长为  
A. B. C. D.
二、填空题(本大题共10题,每题2分,满分20分)
9.求比值:    .
10.化为最简整数比:  .
11.如果4是与8的比例中项,那么的值为  .
12.如图的方格是由相同的小正方形组成,那么阴影占整个图形的  .
13.小红妈妈存入银行10000元,年利率为,三年后总共可以取出    元.
14.实验室培育了一批玉米种子,发芽粒数与没有发芽粒数的比是,这批种子的发芽率是   .
15.把一个圆剪成两个扇形,如果其中较小扇形的圆心角为120度,那么较小扇形的弧长与较大扇形的弧长的比为    .
16.爱好手工制作的小海从一块长、宽的长方形木板上锯下一块最大的圆形木板作为车模的轮子,完成后的模型车在平整的地面上沿着直线前进了,那么这个轮子滚动了   圈.取
17.如图,三个小正方形的边长都为1,则图中阴影部分面积的和是   (结果保留.
18.如图,一个半径为的圆绕着一个三条边分别为、、的直角三角形的外侧滚动一周,那么这个圆滚动过程中覆盖的面积为  .(结果保留
三、解答题(本大题共8题,第19~22题每题6分,第23、24题每题7分,第25题8分,第26题10分,满分56分)
19.求下列各式中的值:
(1);
(2).
20.已知,,求.
21.如果某辆汽车行驶耗油,按照这样的每千米耗油量,求这辆汽车行驶的耗油量.(用比例方法求解)
22.某品牌电脑进价为每台4000元,商家准备以的盈利率定价出售.
(1)求这台电脑的定价是多少元?
(2)后来商家搞促销活动,该品牌电脑按定价的八折出售,求打折以后商家的实际盈利率.
23.如图,一个直径为的半圆形绕着点逆时针方向转动,此时点移动到点.
(1)求阴影部分的周长;
(2)求阴影部分的面积.取
24.学校要在周长为18.84米的圆形花坛外围修一条宽2米的环形塑胶跑道.那么这个圆形花坛的半径是多少米?环形塑胶跑道的面积是多少平方米?取
25.小红读一本书,第一天读完后,已读的和未读的页数之比是,第二天又读了30页,已读的和未读的页数之比变为,问这本书有多少页?
26.我们可以用标准体重法来判断是否肥胖:
岁少年儿童的标准体重的计算方法:标准体重(千克)年龄;
肥胖程度的计算公式:肥胖程度.
一般的,我们可以按照肥胖程度将肥胖分为三种类型,如下表所示.
肥胖程度 以上
肥胖类型 轻度肥胖 中度肥胖 重度肥胖
(1)小胖今年12岁,体重40千克,请你判断一下小胖是否肥胖?如果是,那么他属于哪一类的肥胖?
(2)为了管理体重,小胖决定每天在学校操场上沿着跑道跑步进行锻炼,跑道的长度是一个由长方形和两端的半圆组成的图形的周长(如图).经过测试,小胖在第一个10分钟内,跑步的平均速度为120米分钟;从第二个10分钟开始,每个10分钟内的平均速度都比上一个10分钟内的平均速度降低.小胖咨询医生后得知,如果要达到减重的目的,跑步需要同时满足以下两个条件:
①每天跑步的总路程不少于3千米;
②每天连续跑步时间不少于30分钟.
现在小胖计划每天放学后在操场上连续跑8圈,这个计划是否能满足减重的条件?请通过计算加以说明取.
(3)小胖想自己既然已经运动健身,那么吃一点自己喜欢的零食应该没啥问题.于是他买了一包100克的薯片,包装袋上显示总热量为550千卡.他上网查了一下,跑步热量消耗公式如下:
跑步消耗的热量(千卡)体重(千克)跑步距离(千米)
请你帮助小胖估算一下,按照现在40千克的体重,要完全消耗掉这包薯片的热量,他至少需要在操场上跑几圈?(结果保留整数)
参考答案
一.选择题(共8小题)
题号 1 2 3 4 5 6 7 8
答案 B A C C A B D D
一、选择题(本大题共8题,每题3分,满分24分)
1.如果,都不为零,且,那么下列比例中正确的是  
A. B. C. D.
解:,
或.
故选:.
2.下列说法中错误的是  
A.的值等于3.14
B.的值是圆周长与直径的比值
C.的值与圆的大小无关
D.是一个无限小数
解:由分析可知:
、的值等于3.14,说法错误;
、的值是圆周长与直径的比值,说法正确;
、的值与圆的大小无关,说法正确;
、是一个无限小数,说法正确;
故选:.
3.下列各个比中,能与组成比例是  
A. B. C. D.
解:选项中,,不能与组成比例,故不符合题意;
选项中,,不能与组成比例,故不符合题意;
选项中,,故符合题意;
选项中,,不能与组成比例,故不符合题意.
故选:.
4.小海、小普和乐乐在篮球场上定点投篮,小海投了30次,进球12次;小普投了10球,进球4次;乐乐投了20次,进球9次.就这次的成绩,谁的投篮水平更高?  
A.小海 B.小普 C.乐乐 D.三人水平一样
解:小海的命中率为,
小普的命中率为,
乐乐的命中率为,

乐乐的投篮水平高.
故选:.
5.如果扇形的半径扩大为原来的2倍,圆心角的度数缩小为原来的,那么这个扇形的面积  
A.扩大为原来的2倍 B.扩大为原来的4倍
C.缩小为原来的 D.保持不变
解:由题知,
设原来扇形的半径为,圆心角为,
则原来扇形的面积可表示为,变化后扇形的面积可表示为,
所以这个扇形的面积扩大为原来的2倍.
故选:.
6.上海市普陀区真如寺古塔,建于宋代,是中国现存较为古老的砖木结构塔之一.古塔高约50米,外观七层八檐,结构精巧,历经数百年风雨依然巍然屹立,具有重要的历史和文化价值.小明在研究真如寺古塔时,决定在纸上画一张古塔的图纸.以下哪个比例尺最合适?  
A. B. C. D.
解:50米厘米,
、古塔图上高度为(厘米),远超过纸张的长度,故不符合题意;
、古塔图上高度为(厘米),小于纸张的长度,故符合题意;
、中的比例尺把古塔的高放大了,显然不切实际,故、不符合题意.
故选:.
7.如图,将一个半径为的圆形纸片平均分成16份,按图示方式拼合在一起.对比变化前后的两个图形,下列说法中正确的是  
A.变化前后,图形的面积和周长都不变
B.变化前后,图形的面积和周长都增加了
C.变化前后,图形的面积不变,周长增加了
D.变化前后,图形的面积不变,周长增加了
解:长方形的面积等于圆的面积,
长方形的两个长边的和即为圆的周长,
长方形的周长比圆多了两条宽的长度,即增加了2个半径的长度,
变化前后,图形的面积不变,周长增加了.
故选:.
8.如图,在△中,,,,,.将△沿着直线作顺时针方向的滚动.△到△的位置叫做“滚动了一周”,那么这个三角形在滚动了6周之后,点经过的路程长为  
A. B. C. D.
解:如图,△ “滚动了一周”,点所经过的路程为,的长度和,
由旋转可知,,,,,
△ “滚动了一周”,点所经过的路程为,
△在滚动了6周之后,点经过的路程长为,
故选:.
二、填空题(本大题共10题,每题2分,满分20分)
9.求比值:    .
解:.
故答案为:.
10.化为最简整数比:  .
解:

故答案为:.
11.如果4是与8的比例中项,那么的值为 2 .
解:是与8的比例中项,


解得.
故答案为:2.
12.如图的方格是由相同的小正方形组成,那么阴影占整个图形的 37.5  .
解:设每个小正方形的面积为1平方厘米,
正方形的面积:平方厘米,
阴影部分的面积:平方厘米,

答:阴影占整个图形的.
故答案为:37.5.
13.小红妈妈存入银行10000元,年利率为,三年后总共可以取出  10750  元.
解:
(元.
故答案为:10750.
14.实验室培育了一批玉米种子,发芽粒数与没有发芽粒数的比是,这批种子的发芽率是   .
解:,
故答案为:.
15.把一个圆剪成两个扇形,如果其中较小扇形的圆心角为120度,那么较小扇形的弧长与较大扇形的弧长的比为    .
解:设这个圆的半径为,则.
故答案为:.
16.爱好手工制作的小海从一块长、宽的长方形木板上锯下一块最大的圆形木板作为车模的轮子,完成后的模型车在平整的地面上沿着直线前进了,那么这个轮子滚动了 100  圈.取
解:锯下一块最大的圆形木板的直径是,


(圈.
答:那么这个轮子滚动了100圈.
故答案为:100.
17.如图,三个小正方形的边长都为1,则图中阴影部分面积的和是   (结果保留.
解:根据图示知,,

图中阴影部分的圆心角的和是,
阴影部分的面积应为:.
故答案为:.
18.如图,一个半径为的圆绕着一个三条边分别为、、的直角三角形的外侧滚动一周,那么这个圆滚动过程中覆盖的面积为 
  .(结果保留
解:圆在每条边上滚动时,会形成一个宽度为的矩形区域
,因此三条边对应的矩形的面积分别为:,,,
总矩形面积为,
圆在每个角处滚动时,总共滚动的角度为,
故总扇形面积为,
这个圆滚动过程中覆盖的面积为,
故答案为:.
三、解答题(本大题共8题,第19~22题每题6分,第23、24题每题7分,第25题8分,第26题10分,满分56分)
19.求下列各式中的值:
(1);
(2).
解:(1),



(2),



20.已知,,求.
解:,,

21.如果某辆汽车行驶耗油,按照这样的每千米耗油量,求这辆汽车行驶的耗油量.(用比例方法求解)
解:设汽车行驶的耗油量为 ,



答:这辆汽车行驶的耗油量.
22.某品牌电脑进价为每台4000元,商家准备以的盈利率定价出售.
(1)求这台电脑的定价是多少元?
(2)后来商家搞促销活动,该品牌电脑按定价的八折出售,求打折以后商家的实际盈利率.
解:(1)
(元,
答:这台电脑的定价是6000元;
(2)

答:打折以后商家的实际盈利率是.
23.如图,一个直径为的半圆形绕着点逆时针方向转动,此时点移动到点.
(1)求阴影部分的周长;
(2)求阴影部分的面积.取
解:(1)由图可得,
阴影部分的周长为:

即阴影部分的周长为;
(2)由图可得,
阴影部分的面积

即阴影部分的面积为.
24.学校要在周长为18.84米的圆形花坛外围修一条宽2米的环形塑胶跑道.那么这个圆形花坛的半径是多少米?环形塑胶跑道的面积是多少平方米?取
解:(1),
解得,
答:这个圆形花坛的半径是3米.
(2)
(平方米),
答:环形塑胶跑道的面积是50.24平方米.
25.小红读一本书,第一天读完后,已读的和未读的页数之比是,第二天又读了30页,已读的和未读的页数之比变为,问这本书有多少页?
解:由题意得:

答:这本书共144页.
26.我们可以用标准体重法来判断是否肥胖:
岁少年儿童的标准体重的计算方法:标准体重(千克)年龄;
肥胖程度的计算公式:肥胖程度.
一般的,我们可以按照肥胖程度将肥胖分为三种类型,如下表所示.
肥胖程度 以上
肥胖类型 轻度肥胖 中度肥胖 重度肥胖
(1)小胖今年12岁,体重40千克,请你判断一下小胖是否肥胖?如果是,那么他属于哪一类的肥胖?
(2)为了管理体重,小胖决定每天在学校操场上沿着跑道跑步进行锻炼,跑道的长度是一个由长方形和两端的半圆组成的图形的周长(如图).经过测试,小胖在第一个10分钟内,跑步的平均速度为120米分钟;从第二个10分钟开始,每个10分钟内的平均速度都比上一个10分钟内的平均速度降低.小胖咨询医生后得知,如果要达到减重的目的,跑步需要同时满足以下两个条件:
①每天跑步的总路程不少于3千米;
②每天连续跑步时间不少于30分钟.
现在小胖计划每天放学后在操场上连续跑8圈,这个计划是否能满足减重的条件?请通过计算加以说明取.
(3)小胖想自己既然已经运动健身,那么吃一点自己喜欢的零食应该没啥问题.于是他买了一包100克的薯片,包装袋上显示总热量为550千卡.他上网查了一下,跑步热量消耗公式如下:
跑步消耗的热量(千卡)体重(千克)跑步距离(千米)
请你帮助小胖估算一下,按照现在40千克的体重,要完全消耗掉这包薯片的热量,他至少需要在操场上跑几圈?(结果保留整数)
解:(1)是肥胖,属于轻度肥胖,
标准体重为:(千克),
肥胖程度为:,属于轻度肥胖;
(2)跑道周长:(米,
总路程为:(米,
满足大于3千米,
第1个10分钟跑的路程:米,
第2个10分钟跑的路程:米,
第3个10分钟跑的路程:米,
米米,
故能满足减重条件;
(3)跑步距离千米,
米,
圈,
故至少要跑30圈.
(
1
)

展开更多......

收起↑

资源预览