资源简介 4.5 函数模型及其应用 练习一、选择题1.某科研小组培育一种水稻新品种,由第1代1粒种子可以得到第2代120粒种子,以后各代每粒种子都可以得到下一代120粒种子,则第10代得到的种子数为( )参考数据:,A. B. C. D.2.国家速滑馆又称“冰丝带”,是北京2024年冬奥会的标志性场馆,拥有亚洲最大的全冰面设计,但整个系统的碳排放接近于零,做到了真正的智慧场馆 绿色场馆,并且为了倡导绿色可循环的理念,场馆还配备了先进的污水 雨水过滤系统,已知过滤过程中废水的污染物数量与时间的关系(为最初污染物数量).如果前3个小时消除了的污染物,那么污染物消除至最初的还要( )A.小时 B.3小时 C.3.2小时 D.4小时3.某班研究性小组的同学为了研究活性炭对污水中某种污染物的吸附能力,设计了一种活性炭污水净化装置.现污水中该种污染物含量为(单位:),测得污水通过长度为l(单位:m)的净化装置后污染物的含量W如下表:l 0 1 2 3W研究小组的同学根据表格数据建立了W关于l的函数模型.则与表格中数据吻合的函数模型是( )A. B.C. D.4.在2h内将某种药物注射进患者的血液中,在注射期间,血液中的药物含量呈线性增加;停止注射后,血液中的药物含量呈指数衰减.下面能反映血液中药物含量Q随时间t变化的图象是( )A. B.C. D.5.深度学习是人工智能的一种具有代表性的实现方法,它是以神经网络为出发点的.在神经网络优化中,指数衰减的学习率模型为,其中L表示每一轮优化时使用的学习率,表示初始学习率,D表示衰减系数,G表示训练迭代轮数,表示衰减速度.已知某个指数衰减的学习率模型的初始学习率为0.5,衰减速度为18,且当训练迭代轮数为18时,学习率为0.4,则学习率衰减到0.2以下(不含0.2)所需的训练迭代轮数至少为( )(参考数据:)A.72 B.73 C.74 D.756.溶液的酸碱度是用来衡量溶液酸碱性强弱程度的一个指标,在化学中,常用值来表示溶液的酸碱度.的计算公式为其中表示溶液中氢离子的浓度,单位是摩尔/升.甲同学在径流咸阳的渭河中取出一定的水溶液,经测定其中氢离子的浓度摩尔/升,则渭河咸阳段水溶液的值约为( )(参考数据:,)A. B. C. D.7.某公司2020年全年投入某项技术的研发资金为120万元,并且计划以后每年投入的研发资金比上一年增长,则该公司全年投入该项技术的研发资金开始超过200万元的年份是( )参考数据.A.2028年 B.2029年 C.2030年 D.2031年8.预测人口变化趋势有很多方法,“直接推算法”使用公式是,其中为预测人口数,为初期人口数,k为预测期内人口年增长率,n为预测期间隔年数.如果在某一时期,那么在这期间人口数( )A.呈上升趋势 B.呈下降趋势 C.摆动变化 D.不变二、多项选择题9.按复利计算利息的一种储蓄,本金为a(单位:万元),每期利率为r,本利和为y(单位:万元),存期数为x.已知甲按照这种储蓄存入了一笔本金,当存期数为2时,本利和为1.1万元,当存期数为4时,本利和为1.21万元,则( )A.B.C.甲的本金为1万元D.当存期数为8时,甲的本利和超过1.44万元10.半导体的摩尔定律认为,集成电路芯片上的晶体管数量的倍增期是两年,用表示从开始,晶体管数量随时间t变化的函数,若,则下面选项中,符合摩尔定律公式的是( )A.若t是以月为单位,则B.若t是以年为单位,则C.若t是以月为单位,则D.若t是以年为单位,则11.氚,亦称超重氢,是氢的同位素之一,它的原子核由一个质子和两个中子组成,并带有放射性,会发生衰变,其半衰期是12.43年.样本中氚的质量N随时间t(单位:年)的衰变规律满足,其中表示氚原有的质量,则( )(参考数据:)A.B.经过年后,样本中的氚元素会全部消失C.经过年后,样本中的氚元素变为原来的D.若x年后,样本中氚元素的含量为,则三、填空题12.物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是,经过一段时间tmin后的温度是,则,其中表示环境温度,h称为半衰期.现有一杯用热水冲的速溶咖啡,放在的房间中,如果咖啡降温到需要20min,那么降温到,需要的时长为__________min.13.理论上,一张纸经过一定次数对折之后厚度能超过地月距离,但实际上,因为纸张本身有厚度,我们并不能将纸张无限次对折,当我们的厚度超过纸张的长边时,便不能继续对折了.一张长边为w,厚度为x的矩形纸张沿两个方向不断对折,则经过两次对折,长边变为,厚度变为.在理想情况下,对折次数n有下列关系:,根据以上信息,一张长为,厚度为的纸张最多能对折的次数为________.14.研究发现,某昆虫释放信息素t秒后,在距释放处x米的地方测得的信息素浓度y满足,其中k,a为非零常数;已知释放1秒后,在距释放处2米的地方测得信息素浓度为m,则释放信息素4秒后,距释放处的___________米的位置,信息素浓度为.15.三个变量,,随变量x变化的数据如下表:x 0 5 10 15 20 25 305 130 505 1130 2005 3130 45055 90 1620 29160 1700611205 30 55 80 105 130 155其中关于x呈指数增长的变量是___________.四、解答题16.某文旅企业准备开发一个新的旅游景区,前期投入200万元,若该景区开业后的第一年接待游客x万人,则需另投入成本万元,且该景区门票价格为64元/人.(1)求该景区开业后的第一年的利润(万元)关于人数x(万人)的函数关系式.(利润=收入-成本)(2)当该景区开业后的第一年接待游客多少人时,获得的利润最大?最大利润为多少?17.随着城市居民汽车使用率的增加,交通拥堵问题日益严重,而建设高架道路、地下隧道以及城市轨道公共运输系统等是解决交通拥堵问题的有效措施.某市城市规划部门为提高早晚高峰期间某条地下隧道的车辆通行能力,研究了该隧道内的车流速度v(单位:千米/小时)和车流密度x(单位:辆/千米)所满足的关系式:.研究表明:当隧道内的车流密度达到120辆/千米时造成堵塞,此时车流速度是0千米/小时.(1)若车流速度v不小于40千米/小时,求车流密度x的取值范围;(2)隧道内的车流量y(单位时间内通过隧道的车辆数,单位:辆/小时)满足,求隧道内车流量的最大值(精确到1辆/小时),并指出当车流量最大时的车流密度(精确到1辆/千米).(参考数据:)18.把物体放在空气中冷却,如果物体原来的温度为,空气的温度为,那么后物体的温度(单位:)可由公式求得,其中k是一个随着物体与空气的接触状况而定的正常数.已知空气的温度为,把水放在空气中冷却,水的温度从冷却到需要.(1)求;(2)小王想喝的温水,发现水的温度为,如果他等待水温自然冷却,至少需要等待多少?(3)某电热水壶会自动检测壶中水温,如果水的温度高于,电热水壶不加热,水的温度冷却到,电热水壶开始加热,直至水的温度达到才停止加热,且水的温度从加热到需要8min.现该电热水壶中水的温度为,经过后,此时壶中水的温度是多少?19.某地政府为进一步推进地区创业基地建设,助推创业带动就业工作,拟对创业者提供万元的创业补助.某企业拟定在申请得到x万元创业补助后,将产量增加到万件,同时企业生产m万件产品需要投入的成本为万元,并以每件元的价格将其生产的产品全部售出.(注:收益=销售金额+创业补助-成本)(1)求该企业获得创业补助后的收益y万元与创业补助x万元的函数关系式;(2)当创业补助为多少万元时,该企业所获收益最大?20.在国家大力推广新能源汽车的背景下,各大车企纷纷加大对新能源汽车的研发投入.某车企研发部有100名研发人员,原年人均投入40万元,现准备将这100名研发人员分成两部分:燃油车研发部和新能源车研发部,其中燃油车研发部有x名研究人员.调整后新能源车研发部的年人均投入比原来增加,而燃油车研发部的年人均投入调整为万元.(1)若要使新能源车研发部的年总投入不低于调整前原100名研发人员的年总投入,求调整后新能源车研发人员最少为多少人?(2)若要使新能源车研发部的年总投入始终不低于燃油车研发部的年总投入,求正整数m的最大值.参考答案1.答案:C解析:由题意,第10代得到的种子数为故第10代得到的种子数约为故选:C.2.答案:B解析:由题意可得,解得,令,可得,解得,所以污染物消除至最初的还要3小时.故选:B.3.答案:D解析:由图表中数据可知函数模型满足:第一,定义域为;第二,在定义域单调递减且单位减少率变慢;第三,函数图像过.函数和图像不过,不符合条件,故BC错误;函数单调递增,故A错误;D选项:满足上述条件,故D正确.故选:D.4.答案:B解析:在内,血液中的药物含量呈线性增加,则第一段图象为线段,且为增函数,排除A,D,停止注射后,血液中的药物含量呈指数衰减,排除C.能反映血液中药物含量Q随时间t变化的图象是B.故选:B.5.答案:B解析:由题,,所以,又由题当时,,即,所以,令即即,解得,故,所以学习率衰减到0.2以下(不含0.2)所需的训练迭代轮数至少为73.故选:B.6.答案:D解析:由题意可知,渭河咸阳段水溶液的值为.故选:D.7.答案:D解析:设第年投入y元(2020年为第1年),则,令,即,所以,则,则第12年该公司全年投入该项技术的研发资金开始超过200万元,即年该公司全年投入该项技术的研发资金开始超过200万元.故选:D.8.答案:B解析:,,,,又,,,即,,故这一时期人口数呈下降趋势.故选:B.9.答案:ACD解析:由题意得,则解得因为,所以,A,C正确,B错误.当时,,D正确.故选:ABD.10.答案:BC解析:选项A,,,A不符合;选项B,,,,,符合;选项C,,则,,,,,符合,选项D,,,,,不符合.故选:BC.11.答案:CD解析:由题意得,故有,左右同时取对数得,故得,故A错误,当时,,故B错误,而当时,,得到经过年后,样本中的氚元素变为原来的,故C正确,由题意得,化简得,,将代入其中,可得,故D正确.故选:CD.12.答案:30解析:由题得,,代入得,解得,所以,当时,解得,即降温到,需要的时长为30min.故答案为:30.13.答案:8解析:依题意,,所以,即,所以正整数n的最大值为.故答案为:814.答案:4解析:因为释放1秒后,在距释放处2米的地方测得信息素浓度为m,所以,所以,即当,时,,整理得即,所以,因为,所以.故答案为:4.15.答案:解析:指数型函数呈“爆炸式”增长.从表格中可以看出,三个变量,,,的值随着x的增加都是越来越大,但是增长速度不同,相比之下,变量的增长速度最快,可知变量关于x呈指数型函数变化.故答案为:.16.答案:(1)(2)游客人数为万时利润最大,最大利润为万元解析:(1)该景区的门票收入为万元,则利润,即,故该景区开业后的第一年的利润(万元)关于人数x(万人)的函数关系式;(2)当时,,当时,二次函数开口向下,对称轴为,故,当时,,当且仅当,即时等号成立,,综上,游客人数为20万时利润最大,最大利润为万元.17.答案:(1)车流密度x的取值范围是;(2)隧道内车流量的最大值约为3667辆/小时,此时车流密度约为83辆/千米.解析:(1)由题意知当(辆/千米)时,(千米/小时),代入,解得,所以.当时,,符合题意;当时,令,解得,所以.所以,若车流速度v不小于40千米/小时,则车流密度x的取值范围是.(2)由题意得,当时,为增函数,所以,当时等号成立;当时,.当且仅当,即时等号成立.所以,隧道内车流量的最大值约为3667辆/小时,此时车流密度约为83辆/千米.18.答案:(1)(2)至少需要等待(3)解析:(1)已知空气的温度为,把水放在空气中冷却,水的温度从冷却到需要,则,即,所以.(2)由题意可知:,,,,可得,解得,所以至少需要等待.(3)设水的温度由冷却到,需要,则,解得,此时电热水壶开始加热,需要加热至,且,若水的温度由冷却到,可知需要,显然,则,所以经过后,此时壶中水的温度是.19.答案:(1),(2)7万元解析:(1)依据题意可知,销售金额万元,创业补助x万元,成本为万元,所以收益,.(2)由(1)可知,,其中,当且仅当,即时,取等号.所以,所以当时,该企业所获收益最大,最大值为74万元.20.答案:(1)34;(2)6解析:(1)由题意,原100名研发人员年总投入为万元,调整后新能源车研发部共有名研究人员,年人均投入为万元,则有:,即:,所以,即燃油车研发部最多有66名研究人员,所以新能源车研发部人员最少为34人.(2)要使新能源车研发部的年总投入始终不低于燃油车研发部的年总投入,则有:,即:,显然,当且仅当即时,取“=”,所以,即正整数m的最大值为6. 展开更多...... 收起↑ 资源预览