资源简介 2025 年全市初中九年级第二次质量调查数学参考答案及评分标准一、 选择题:(每题 3分,共 30分)题号 1 2 3 4 5 6 7 8 9 10答案 D C A B D B C A C D二、填空题:(每题 3分,共 15分)1 311. 12. 24 13. 2<k<1 14. 4 3 15.2 2三、解答题:(本题共 75分)16. (共 10分)1解: (1)原式= 1 1 ···························································· (3 分)817= ·································································· (5 分)8(2)方程两边都乘以4 2x 6 1 4 2x ·················································· (3 分)11x ·························································· (4 分)211检验: 当 x 时, 4 2x 0211所以原方程的解为 x ····································· (5 分)217. (8分)解:BAMC(1)如图所示即为所求 ······················································ (3 分)(2)由题意,(2 a 2a 100) 800 ···································· (5 分)a 100 ··············································· (7 分)答:第一种花卉需要的资金最多是 100 元。 ························· (8 分)18.(8分)解:(1)完成表格:1100; 25% ·············································· (2分)(2)30000 32% 500 1010(0 本)答:学校图书馆社会科学类图书大约有 10100本 ······················· (4分)(3) 小明 一 二 三 四小华 一 二 三 四 一 二 三 四 一 二 三 四 一 二 三 四由树状图可得,一共有 16种等可能的结果,其中小明、小华抽到同一类4 1图书的结果有 4种,∴P(抽到同一类图书) ····················· (8 分)16 419.(8分)解:延长 PF 交 BC 于点 G,延长 MN 交 BC 于点 K过点 P 作 PH⊥NK 于点 H ··················································· (1 分)∵PF∥AC. MN∥ACB∴∠PGB=∠MKB=∠C=90° PGF由已知 BG=150 米. CK=100 米N∴GK=850-150-100=600 米 M H KA C∵PH⊥MK. ∴∠PHK=90°∴四边形 PHKG 为矩形 ···················································· (2 分)∴PH=600 米 ································································· (3 分)在 Rt△PNH 中o PH当∠PNH=30°时, tan 30 =NH600∴ NH 103(8 米) ·············································· (4分)33o PH当∠PNH=60°时, tan 60 =NH米) ······································ (5 分)PH在 Rt△PMH 中, tan20 MH∴ 米 ····································· (6分)∴MN 1666.7 1038 629(米)MN 1666.7 346 1321(米) ································ (7分)∴MN 的长度约在 629 米到 1321 米之间符合要求. ················ (8分)20. (8分)2解:(1)由题意,设抛物线的解析式 y a(x 3) 3.2, 把(0,1.8)代入1.8 9a 3.27a 457 2∴抛物线解析式 y = - (x - 3) +3.2 ·························· (4 分)457(2)当 y 0时,有 3.2 (x 3)245144解得 x 3 ················································· (6 分)7144∵ <257∴ x<8∴不能达到满分 ······························································· (8 分)21. (8分)(1)证明:如图 1,连接 AO 并延长交 BC 于 G,交⊙O 于 F∵AB=AC A D∴∴E∴∠BAF=∠CAF O∴AG⊥BC∴∠AGB=90° G∵四边形 ABCD 为平行四边形 B CF∴BC∥AD21题答图 1∴∠AGB=∠OAD=90°∴OA⊥AD∵OA 是⊙O 的半径∴AD 是⊙O 的切线 ·················································· (4 分)(2)解:如图 2,过点 E 作 EH⊥AC 于点 H∵四边形 ABCD 是平行四边形 A D∴AB∥CD,AD=BC,∠D=∠B,∴∠ACD=∠BAC=α H E∵AE=CE O∴∠ACE=∠CAE=α G∴∠AED=∠ACE+∠CAE =2α B CF∵A,B,C,E 四点在⊙O 上21题答图 2∴∠AEC+∠ABC=180°又∵∠AEC+∠AED=180°∴∠AED=∠ABC=∠D=2α∴AD=AE=CE∵AB=AC∴∠ABC=∠ACB=2α∴∠D=∠ABC=∠ACB =∠AED= 2α∴△ADE∽△ABC ···················································· (6分)设 AD a . AB b∴2整理得:a ab b2 0- 1+ 5 - 1- 5解得: a1 = b , a2 = b (舍)2 2∴∵AE=CE, EH⊥AC∴AH=CH=在 Rt△CEH 中1bCH 5 +1∴ cosα = = 2 = ············································· (8分)CE a 422. (12分)解:(1)如图 1,由对称可得 AB=AB'∵四边形 ABCD 是矩形 A D∴∠BAD=90°∵ 是 BD 中点 B'∴ ==B E C22 题答图 1∴ = =∴△ 为等边三角形∴∠ABD=60°ADtan 60 3AB∴ AD 3ABn 3 ···································································· (4 分)(2)① 如图 2,过点 M 作 MF⊥BC 于点 F,过点 作 H⊥BC 于点 H,由(1)得 ∠BAE=30°,AD= AB=∴∠AEB=60°∵平移∴∠MNF=60°∵MF⊥BC∴∠ABC=∠BAD=∠BFM=∴四边形 ABFM 是矩形所以 MF=AB=1∵AM=MD3∴AM=BF=2在 Rt△MNF 中∵ tan∠MNF= tan A'3 B'∴ NF A M D35∴ BN = BF +FN = 36B E F N C H3∴ NC = BC - BN = 22 题答图 26∵翻折∴∠MNB=∠ =60°, BN= N∴∠ NC=60°在 Rt△ NH 中∵5 3 5∴ = = 3 6 2 4∴3∴CH = NH - CN =4在 Rt△ CH 中,根据勾股定理得: = +5 2 3 2 2 7 7= ( ) ( ) ·························· (8分)4 4 4 2② ,如图 3,连接 AF ,BFA'∵四边形 ABCD 是矩形∴∠ADC=∠BCD=90°,AD=BCB'∵MN=CN∠MFD=∠CFN MA D∴△MFD≌△NFC∴DF=CF F∴△ADF≌△BCFB∴AF=BF E C N由对称可得: 22 题答图 3AF= , BF=∴ ······················································ (12 分)23. (13分)解:(1)把点(-1,2)代入k2 解得 k 2 ··················································· (2 分) 12 1 2a 1a=1∴k,a 的值分别是-2,1 ················································ (4 分)(2)由对称可得,点 (1,-2)把点(1,-2)代入 y x2 2x 1当 x 1时 y 2∴点 在函数 G 的图像上 ··················································· (6 分)(3)由图像可得①在 y 轴左侧,图像有确定的最高点当-2≤m≤-1 时-1≤m+1≤0,符合题意此时点 M、N 之间有确定的最大值.在 y 轴右侧,图像有确定的最低点当 0≤m≤1 时1≤m+1≤2,符合题意此时,点 M、N 有确定的最小值。∴m 的取值范围是0 m 1或 2 m 1 ……………………………(9 分)② i 当点 M、N 在点 A 左侧时直线 MN 上的点,当 x= -1 时, y<2∴直线 MN 与 AA'有交点ii 当点 M 在点 A 左侧,点 B 在点 A 的右侧时设直线 MN 的解析式为 y kx b当 x m 1时 y (m 1)2 2(m 1) 1 m2 22 2点 M(m , ) 点 N(m 1,m 2)m2即 mk bm2m 2 (m 1)k b2 2解得 k m 2 m2 3b m 2m 2m2 2 2∴直线 y (m 2 )x m3 2m 2m m把点(1,-2)代入2 2 2 2 m 2 m3 2m 2m m2 3m m 2m 2 0m2(1 m) 2(m 1) 0(m 1)(m2 2) 0m 1(不合题意,舍去)m 2 (不合题意,舍去)∴m 2即 当 2<m< 1时,直线 MN 与 AA'无交点iii 当点 M,N 在点 A 右侧,且在函数 y x2 2x 1图象的对称轴左侧时直线 MN 上的点,当 x= -1 时, y<2,当 x= 1 时, y<-2∴直线 MN 与 AA'无交点iv 当 M,N 位于对称轴两侧时直线 MN 与 AA'有交点V 当 M,N 在对称轴右侧时直线 MN 上的点,当 x= 1 时, y<-2∴直线 MN 与 AA'无交点。综上所述,若直线 MN 与线段 AA'无交点,则 m 的取值范围是 - 2<m<- 1或 1<m<0或m>1 …………………………(13分) 展开更多...... 收起↑ 资源预览