资源简介 (共17张PPT)5.1 解决问题的策略(1)-----画线段图解决问题苏教版小学数学四年级下册学习目标1、在解决实际问题的过程中,学会用画线段图等方法整理相关信息,并能记住所画的线段图。分析实际问题中的数量关系,明确解决问题的思路、2、根据解决实际问题的需要,适当的选择画图方式,并收集整理信息,在运用策略的过程中,进行有条理的思考。3、进一步积累解决问题的经验,增强解决问题的策略意识。培养学好数学的信心。重点:会用画线段图的策略解决有关问题。难点:能记住线段图来分析实际问题中的数量关系。一、情境引入:画图策略,好形象!一班得了12面小红旗,二班比一班多得了3面。二班得了多少面 画线段图小宁和小春共有72枚邮票,小春比小宁多12枚。两人各有邮票多少枚?探究新知:你能根据题意把线段图填写完整吗?看线段图分析数量关系,想一想可以先算什么。(1)两人邮票的总数减去 12枚,等于小宁邮票枚数的2倍,先算出小宁有多少枚。(2)两人邮票的总数加上12枚,等于小春邮票枚数的2倍,先算……12721272选择一种你喜欢的方法解答。用“把得数代入原题”的方法检验,要分几步进行?先检验两人邮票的总数是不是72。还要检验小春是不是比小宁多12枚。(72-12)÷2= 60÷2= 30(枚)30+12=42(枚)(72+12)÷2= 84÷2= 42(枚)42-12=30(枚)小宁小春小春小宁检验,并写出答案。42+30=72(枚), 42-30=12(枚)答:小宁有邮票30枚,小春有邮票42枚。归纳小结:回顾解决问题的过程,你有什么体会?画线段图能使数量关系更直观、更清楚。看线段图分析数量关系,容易找到解题方法。把得数代入原题检验,要符合所有已知条件。在以前的学习中,我们曾经运用画图的策略解决过哪些问题?1、通过画一画、圈一圈,认识了一个数是另一个数的几倍。2、解决问题时,经常要画线段图或示意图表示题中的条件和问题。3、探索周期排列的规律时,画图表示物体的排列顺序,找出规律。试一试:看图说出已知条件和问题,再解答。科技书和文艺书各有多少本?(105+15)÷2=120÷2=60(本)60-15=45(本)答:科技书有60本,文艺书有45本。二、例题讲解:例1、两个小队的少先队员去植树,一共植了34棵。其中第二小队比第一小队多植4棵。两个小队各植树多少棵?(先根据题意画出线段图,再解答。)画出线段图能够直观、清晰地表现关系,方便分析。现在你能有把握地列式计算了吗?(34+4)÷2=38÷2=19(棵)19-4=15(棵)答:第一小队植15棵,第二小队植19棵。例2、两个数的和是120,差是52。请求出这两个数分别是多少?(120+52)÷2=86(120-52)÷2=34带入检验:86+34=120,86-34=52,符合要求。答:这两个数分别是86和34.1、公园里有柳树和杨树共120棵,其中柳树比杨树多30棵。柳树和杨树各有多少棵 方法一:若杨树增加30棵,则杨树和柳树一共有( )棵,是柳树棵数的( )倍,可求出柳树有( )棵,杨树有( )棵;方法二:若柳树减少30棵,则杨树和柳树一共有( )棵,是杨树棵数的( )倍,可求出杨树有( )棵,柳树有( )棵。三、基础强化:2、李娟在手工课上剪了4条花边(如下图)每条短花边长多少厘米?长花边呢?3、一个双层书架,上层书的本数是下层的3倍。如果从上层搬60本到下层,那么两层书的本数正好相等。原来上、下层各有图书多少本?(在图中表示出条件和问题,再解答)小健和小西买同样的笔记本,小健买了3本,小西买了5本,小健比小西少花12元。求笔记本的单价是多少元/本?(先画图,再解答。)当我们熟练掌握这种“知和、知差”的解题技巧之后,不画图也可以轻松解决类似题型了!勤检验哦!四、拓展提高:五、总结反思:1、解决问题时画线段示意图,表示其中的条件和问题,可以快速准确的分析数量关系,从而找到解决解题的方法。2、和、差关系:大数=(和+差)÷2;小数=(和 - 差)÷2。3、数形结合思想是指将抽象的数学概念记住图形,使之直观化、形象化和简单化的一种思想。六、随堂检测:1、看图说出已知条件和问题,并解答。2、上、下两层书架一共有72本书,其中下层比上层多8本。你能不画图,直接算出上层、下层各有多少本书吗? 展开更多...... 收起↑ 资源预览