【精品解析】广东省湛江市遂溪县遂城第九小学2023年六年级下数学教学质量监测

资源下载
  1. 二一教育资源

【精品解析】广东省湛江市遂溪县遂城第九小学2023年六年级下数学教学质量监测

资源简介

广东省湛江市遂溪县遂城第九小学2023年六年级下数学教学质量监测
1.(2023·遂溪期末)2021年5 月11日,第七次全国人口普查数据显示:⑴全国人口共有1411780000人,把横线上的数改写成用“亿”作单位的数是   亿。⑵其中男性人口为7.2334亿人,横线上的数中的数字“2”表示2个   。
2.(2023·遂溪期末)3吨40千克=   千克    公顷
3.(2023·遂溪期末)根据下图中涂色部分与整个图形的面积关系填写下边算式。
4:   =   =   %=   (填小数)
4.(2023·遂溪期末)淘气今年a岁,笑笑的年龄是淘气的4倍,笑笑今年   岁,奇思的年龄比淘气2倍少1岁,奇思今年   岁。
5.(2023·遂溪期末)一个圆柱体橡皮泥,底面积是15平方厘米,如果把它捏成同样高的圆锥,这个圆锥底面积是   平方厘米。
6.(2023·遂溪期末)体育锻炼标准规定:六年级女生1分钟跳绳达到152个为优秀,如果超过152的个数用正数表示,那么晶晶班上的10名女生的成绩分别记作:+3,+11,-3,0,-5,+7,+13,-4,-2,0。则这10名女生1分钟跳绳的平均成绩是   个,这10名女生1分钟跳绳的成绩最好的和最差的相差   个。
7.(2023·遂溪期末)下图中的7个点连在一起形成了两个完全一样的长方形,其中2个点的位置用数对表示分别是(1,5)、(5,1)。请写出A点和B点的数对。
A点的数对是   ;B点的数对是   。
8.(2023·遂溪期末)淘气手绘了一幅地图,用图上4厘米的长度表示从家到公园 200米的长度,这幅地图的比例尺是   ,如果淘气家到学校的实际距离是 1500米,那在这幅地图上应画   厘米。
9.(2023·遂溪期末)一个正方形的边长增加它的 后,得到新正方形的面积是100 平方厘米,则原来正方形的周长是   厘米,原来正方形的面积是   平方厘米。
10.(2023·遂溪期末)下面说法比较符合实际的是(  )。
A.一包盐约重 250千克 B.淘气1分钟跑了2千米
C.教室门的面积约2平方分米 D.笑笑家6月用水量约20立方米
11.(2023·遂溪期末)下图是一个正方体的展开图,折叠后“祝”所对的是(  )字。
A.学 B.业 C.进 D.步
12.(2023·遂溪期末)在下列我们学过的图形分类关系图中,错误的是(  )。
A. B.
C. D.
13.(2023·遂溪期末)下面各组的两个比,能组成比例的有(  )组。
⑴18:15和0.6:0.5 ⑵和.
⑶0.4:0.8和0.5:0.2 ⑷16:8和1.2:0.6
A.1 B.2 C.3 D.4
14.(2023·遂溪期末)在下图中添上一个同样的小正方体,使它从前面和左面观察所看到的图形与现在的图形从前面和左面所观察到的图形一样,下面符合要求的是(  )。
A. B.
C. D.
15.(2023·遂溪期末)下列说法中错误的是(  )
A.既是质数又是偶数的自然数是2 B.最小的自然数是1
C.1既不是质数,也不是合数 D.没有最大的自然数
16.(2023·遂溪期末)如果一个三角形的两条边的长分别是6cm和9cm,那么第三条边的长可能是(  )cm。
A.1 B.2 C.3 D.4
17.(2023·遂溪期末)奇思用2、6、7三张数字卡片摆成了许多三位数,她所摆成的三位数一定是(  )的倍数。
A.7 B.6 C.3 D.2
18.(2023·遂溪期末)口袋中有大小、材质相同的红球3个,白球4个,黄球5个,从中摸出一个球,摸到(  )可能性最大。
A.红球 B.黄球 C.白球 D.无法确定
19.(2023·遂溪期末)银行在学校东偏南60°方向,那么学校在银行(  )方向。
A.东偏北60° B.西偏北30° C.北偏西30° D.西偏南30°
20.(2023·遂溪期末)如图,表示笑笑骑车从家到图书馆看书然后返回家的过程中离家的距离与时间的变化关系。下面说法错误的是(  )。
A.笑笑家到图书馆的距离是5千米
B.笑笑去图书馆的骑车速度是10千米/小时
C.笑笑在图书馆停留了2小时
D.笑笑从图书馆返回家用了0.5小时
21.(2023·遂溪期末)下面是奇思、妙想、淘气、笑笑四位同学跳远成绩记录,由于记录时不小心记乱了,现知道淘气成绩最好,妙想比笑笑跳得远,但比奇思跳得近。
奇思 妙想 淘气 笑笑
3.80m 3.90m 3.85m 4.03m
妙想的跳远成绩是 (  )m.
A.3.80 B.4.03 C.3.85 D.3.90
22.(2023·遂溪期末)李大伯的果园里现有12排棵树,每排25棵,一共有多少棵树?列竖式计算如图,竖式中箭头所指的数表示(  )。
A.1排果树的棵数 B.2排果树的棵数
C.10 排果树的棵数 D.12 排果树的棵数
23.(2023·遂溪期末)用小棒按照下面的方式摆图形,第(  )个图形刚好用了 631 根小棒。
A.125 B.126 C.127 D.128
24.(2023·遂溪期末)直接写出得数。
①12×0.5= ②0.45×0.6= ③0×76=
④ ⑤ ⑥1.39+0.1=
25.(2023·遂溪期末)用你喜欢的方法计算。(需写出计算过程)
①13.62-2.84+6.38-7.16 ②
③④
26.(2023·遂溪期末)解方程。(需写出计算过程)
①x:4=2:5 ②
27.(2023·遂溪期末)将下面方格纸中的图形A按要求进行操作。
(1)将图形A绕点O逆时针旋转90°后得到的图形B。
(2)将图形B按2:1放大后得到图形C。
28.(2023·遂溪期末)研究表明,吃杂粮有益于身体健康,每人每天大约需要吃50克杂粮。一种杂粮一包净含量为2千克。
(1)张老师一家5口人,买这样的一包杂粮大约够张老师全家吃多少天?
(2)这种杂粮售价为每盒59元,春节期间超市开展促销活动如下:
①满299元减30元;
②满199 元减20元:
③满159 元减15元
按照这样的优惠方式,张老师买4盒要花多少元?
29.(2023·遂溪期末)在“双减”背景下,要减轻儿童的书包重量,让儿童健康成长。实验表明:儿童的负重最好不要超过自身体重的15%。如果儿童长期背过重书包,会妨碍骨骼生长。估一估,你的体重有多少千克(估值取整数)?算一算,你的书包最好不要超过多少千克?
30.(2023·遂溪期末)六一儿童节这天,爸爸送给奇思一个圆锥形玩具(如图)
(1)这个玩具的体积是多少立方厘米?
(2)如果礼物是用一个长方体盒子包装的,那么做这个长方体盒子至少要用多少平方厘米纸板?
31.(2023·遂溪期末)甲乙两个港口的航线长360千米,一艘客轮在13:30从甲港开往乙港,一艘货轮同时从乙港开往甲港,两船在当天17∶30相遇,已知客轮和货轮速度比是5:4。求客轮、货轮每小时各走多少千米?
32.(2023·遂溪期末)淘气和笑笑都喜欢收集邮票,笑笑有50张邮票,如果淘气把自己的邮票数量的 给笑笑,这时笑笑的邮票数量比淘气多8张,原来淘气有多少张邮票?
33.(2023·遂溪期末)学校科学小组用甲、乙、丙三种玉米种子共200粒进行实验。
(1)如图1,请补充完整玉米种子实验数量的扇形统计图。
(2)如图2,这次实验甲种种子的发芽率是多少?
玉米种子发芽数量条形统计图
(3)现在增加丙种子40粒进行第二轮实验,要想两轮实验过后丙种子的发芽率达到85%,第二轮实验的丙种子需要有多少粒发芽?
答案解析部分
1.【答案】14.1178;千万
【知识点】亿以上数的读写与组成
【解析】【解答】解:(1)1411780000=14.1178亿
(2)7.2334亿=723340000,“2”表示2个千万
故答案为:(1)14.1178;(2)千万。
【分析】改写成用“亿”做单位的数:将小数点向左移动8位,末尾加上“亿”即可;同样将用“亿”做单位的数的小数点向右移动8位可以改写成计数单位是“个”的数;位数从小到大依次是个、十、百、千、万、十万、百万、千万、亿……据此解答即可。
2.【答案】3040;0.0406
【知识点】吨与千克之间的换算与比较;公顷、平方千米与平方米之间的换算与比较
【解析】【解答】解:3×1000+40=3040(千克)
406÷10000=0.0406(公顷)
故答案为:3040,0.0406。
【分析】已知1吨=1000千克,1公顷=10000平方米,大单位化为小单位乘以进率,小单位化为大单位除以进率即可。
3.【答案】16;12;25;0.25
【知识点】百分数与小数的互化;百分数与分数的互化;比与分数、除法的关系
【解析】【解答】解:设小正方形边长为1
整个图形的面积为1×1×4=4
三角形的面积为2×1÷2=1
1:4=4:16==25%=0.25
故答案为:16,12,25,0.25。
【分析】首先观察图形,整个图形由四个相同的小正方形组成,涂色部分是一个三角形,其底等于两个小正方形的边长之和,高也等于一个小正方形的边长。设小正方形边长为1,因此整个图形的面积为:1×1×4=4,三角形的面积为:2×1÷2=1;因此三角形面积占整个图形的面积的比例为:1÷4=;=4:16;=;=25%=0.25,据此解答即可。
4.【答案】4a;2a-1
【知识点】年龄问题
【解析】【解答】解:笑笑今年4a岁
奇思今年2a-1岁
故答案为:4a,2a-1。
【分析】根据题意,淘气今年a岁,笑笑的年龄是淘气的4倍,那么笑笑的年龄就是4个a岁,用乘法计算,即4a岁;奇思的年龄比淘气的2倍少1岁,那么奇思的年龄就是2个a岁减去1岁,用乘法和减法计算,即(2a-1)岁。
5.【答案】45
【知识点】圆柱与圆锥体积的关系
【解析】【解答】解:15×3=45(平方厘米)
故答案为:45。
【分析】已知等底等高的圆柱的体积是圆锥体积的3倍,根据圆柱的体积公式:S=Sh,圆锥的体积公式:S=Sh,当圆柱和圆锥的体积均相等时,我们可以得到S圆柱h=S圆锥h,进而根据可以得到S圆柱=S圆锥,也就是说圆锥的底面积是圆柱的3倍,据此解答即可。
6.【答案】154;18
【知识点】平均数的初步认识及计算;正、负数的意义与应用
【解析】【解答】解:(+3+11-3+0-5+7+13-4-2+0)÷10+152
=20÷10+152
=154(个)
13+5=18(个)
故答案为:154,18。
【分析】已知标准数是152个,将所有数相加可以得到10名女生的乘积共超过标准数+3+11-3+0-5+7+13-4-2+0=20(个),根据平均数=总数÷人数,得到平均数超出标准数20÷10=2(个),再加上标准数152个,得到平均成绩是152+2=154(个);成绩最好的记作+13,成绩最差的记作-5,相差13+5=18,所以这10名女生1分钟跳绳的成绩最好的和最差的相差18个。
7.【答案】(5,3);(9,1)
【知识点】数对与位置
【解析】【解答】解:A点的数对是(5,3);B点的数对是(9,1)。
故答案为:(5,3);(9,1)。
【分析】数对中第一个数表示列,第二个数表示行。根据两个点所在的列与行可知,长方形的长有4个单位长度,宽有2个单位长度,那么A点在5列3行,B点在9列1行,由此用数对表示即可。
8.【答案】1:5000;30
【知识点】比例尺的认识;应用比例尺求图上距离或实际距离
【解析】【解答】解:比例尺=4厘米:200米
=4厘米:20000厘米
=1:5000
1500米=150000厘米
150000×=30(厘米)
故答案为:1:5000,30。
【分析】已知比例尺=图上距离:实际距离,所以可以得到此题的比例尺=4厘米:200米,再根据1米=100厘米,得到比例尺=4厘米:20000厘米,根据比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变 ,化简得到比例尺是1:5000;进而根据图上距离=实际距离×比例尺,代入数据计算即可得出淘气家到学校的图上距离。
9.【答案】32;64
【知识点】正方形的周长;分数除法的应用;正方形的面积
【解析】【解答】解:100=10×10
10÷(1+)=8(厘米)
8×4=32(厘米)
8×8=64(平方厘米)
故答案为:32,64。
【分析】已知新正方形的面积是100平方厘米,根据正方形的面积公式:S=边长×边长,得到新正方形的边长是10厘米,所以原来正方形的边长增加后是10厘米,根据分数除法得到原来正方形的边长是10÷(1+)=8(厘米),进而根据正方形的周长=边长×4,面积=边长×边长,代入数据计算即可得到答案。
10.【答案】D
【知识点】千克的认识与使用;千米的认识与使用;平方厘米、平方分米、平方米的认识与使用;体积的认识与体积单位;数学常识
【解析】【解答】解:A:一包盐约重250克
B:淘气1分钟跑了200米
C:教室门的面积约2平方米
D:笑笑家6月用水量约20立方米
故答案为:D。
【分析】长度单位:千米(公里)、米、分米、厘米、毫米,1千米=1000米,1米=10分米=100厘米,1分米=10厘米,1厘米=10毫米;面积单位:平方米、平方分米、平方厘米,1平方米=100平方分米,1平方分米=100平方厘米;体积单位:立方米、立方分米、立方厘米,1立方米=1000立方分米,1立方分米=1000立方厘米;质量单位:吨、千克(公斤)、克,1吨=1000千克,1千克=1000克。一般的,面积相邻两个单位是100;体积、容积、质量相邻两个单位进率是1000;根据生活常识据此解答即可。
11.【答案】B
【知识点】正方体的展开图
【解析】【解答】解:折叠后“祝”所对的是业字。
故答案为:B。
【分析】相对面的特征:三个正方形排成一排的两端;“Z”字形的两端。
12.【答案】A
【知识点】三角形的分类;平行四边形的特征及性质;长方体的特征;圆柱的特征
【解析】【解答】解:三角形不仅包括等腰三角形和等边三角形,还有不等边三角形
故答案为:A。
【分析】三角形按边分为等腰三角形、等边三角形和不等边三角形;四边形就是四条线段围成的图形,有四条边,四个角;平行四边形对边平行;长方体、正方体即圆锥、圆柱都是立体图形,据此选择。
13.【答案】B
【知识点】比例的认识及组成比例的判断
【解析】【解答】解:(1)18:15=,0.6:0.5=,能组成比例
(2):=4≠,不能组成比例
(3)0.4:0.8=,0.5:0.2=≠,不能组成比例
(4)16:8=2,1.2:0.6=2,能组成比例
故答案为:B。
【分析】首先根据比值=前项÷后项,计算出每个选项中两个比的比值,然后根据两个比值相等的比可以组成比例解得即可。
14.【答案】D
【知识点】从不同方向观察几何体
【解析】【解答】解:D:从前面观察到的图形是3个并排的小正方体,从左面观察到的图形是2个并排的小正方体
故答案为:D。
【分析】添上的小正方体只能位于从上面看第二行单独小正方体的左边,据此解答即可。
15.【答案】B
【知识点】合数与质数的特征
【解析】【解答】解:A:既是质数又是偶数的自然数是2 ,说法正确;
B:最小的自然数是0,原题说法错误;
C:1既不是质数,也不是合数 ,说法正确;
D:没有最大的自然数,说法正确。
故答案为:B。
【分析】自然数是从0开始的,最小的自然数是0。
16.【答案】D
【知识点】三角形的特点
【解析】【解答】解:9-6=3(cm)。9+6=15(cm),所以第三边的长度大于3cm,小于15cm,可能是4cm。
故答案为:D。
【分析】三角形任意两边之和大于第三边,任意两边之差小于第三边。所以第三条边的长度大于另外两条边长度差,小于另外两条边长度和。
17.【答案】C
【知识点】3的倍数的特征
【解析】【解答】解:2+6+7=15
15÷3=5
故答案为:C。
【分析】观察数字卡片,2、6、7有奇数有偶数,所以不一定是2的倍数,更不一定是6和7的倍数;而2+6+7=15,15是3的倍数,所以根据3的倍数的特征:每个数位上的数的和相加是3的倍数,得到摆成的三位数一定是3的倍数。
18.【答案】B
【知识点】可能性的大小
【解析】【解答】解:5最大,摸到黄球的可能性最大。
故答案为:B。
【分析】事件发生的可能性是有大小的,可能性的大小与它在总数中所占数量的多少有关,在总数中占的数量多,摸到的可能性就大,占的数量小,摸到的可能性就小。
19.【答案】C
【知识点】根据东、西、南、北方向确定位置
【解析】【解答】解:学校在银行西偏北60°方向或北偏西30°方向。
故答案为:C。
【分析】甲在乙什么方向和乙在甲什么方向,他们的关系是:方向刚好相反。
20.【答案】C
【知识点】速度、时间、路程的关系及应用;用图像表示变化关系
【解析】【解答】解:5÷0.5=10(千米/小时)
2-0.5=1.5(小时)
2.5-0.5=2(小时)
故答案为:C。
【分析】观察图像,斜线表示骑车时间,水平线表示在图书馆的停留时间,所以可以得到在图书馆的停留时间是2-0.5=1.5(小时);根据速度=路程÷时间,得到笑笑的骑车速度是5÷0.5=10(千米/小时);据此结合图像解答即可。
21.【答案】C
【知识点】逻辑推理
【解析】【解答】解:淘气的成绩是4.03m
奇思的成绩是3.9m
妙想的成绩是2.85m
笑笑的成绩是3.8m
故答案为:C。
【分析】已知淘气的成绩最好,所以淘气的成绩是4.03m;又已知妙想比笑笑跳得远,但比奇思跳得近,所以奇思的成绩>妙想的成绩>笑笑的成绩,据此得到妙想的成绩是3.85m。
22.【答案】C
【知识点】两位数乘两位数的笔算乘法(进位)
【解析】【解答】解:25表示25与十位上的1相乘也就是10个25的乘积,即10排果树的棵数
故答案为:C。
【分析】第二个乘数十位上的数字“1”表示1个10,用它乘第一个乘数25(每排树的棵数),是求10个25是多少(即10排果树的棵数)。
23.【答案】B
【知识点】数形结合规律
【解析】【解答】解:6+5(n-1)=631
6+5n-5=631
5n=630
n=126
故答案为:B。
【分析】观察图形发现:第一个图形需要6根小棒,多一个正六边形,多用5根小棒,则第n个图形中,需要小棒6+5(n-1),求第几个图形刚好用了 631 根小棒,可以建立等式6+5(n-1)=631,解出n的值即为答案。
24.【答案】
①12×0.5=6 ②0.45×0.6=0.27 ③0×76=0
④6 ⑤ ⑥1.39+0.1=1.49
【知识点】小数乘整数的小数乘法;小数乘小数的小数乘法;分数与小数相乘;除数是分数的分数除法;含0的乘法
【解析】【分析】算式中同时存在分数、小数、百分数其中两种或两种以上时,化为同一种数再计算;
小数加减法:对齐小数点,然后按照整数加减法进行计算,最后在对应位置点上小数点即可;
小数乘法:将小数点向右移动使小数变为整数,然后计算整数乘法,最后将得到的积的小数点向左移动相同的倍数;
分数乘法:分子乘分子,分母成分母,能约分的约分;
分数除法:一个数除以一个分数等于乘以这个分数的倒数,据此将分数除法转化为分数乘法计算;
0乘以任何数的积都是0。
25.【答案】解:①13.62-2.84+6.38-7.16
=(13.62+6.38)-(2.84+7.16)
=20-10
=10

=
=
=

=
=
=1

=
=14+12-8
=18
【知识点】小数加减混合运算;分数乘法与分数加减法的混合运算;分数除法与分数加减法的混合运算;分数乘除法混合运算;分数乘法运算律
【解析】【分析】①加法交换律指两个加数相加,交换加数的位置,和不变;加法结合律是指三个数相加,先把前两个数相加,再加上第三个数;根据加法交换律和加法结合律可以得到原式=(13.62+6.38)-(2.84+7.16),然后根据小数加减法依次计算即可;
②首先根据一个数除以另一个数等于乘以另一个数的倒数,得到原式=,然后约分计算分数乘法即可;
③根据运算顺序:先乘除后加减,有括号的先计算括号内的式子,先计算小括号内的加法,再将除法转化为乘法得到原式=,接着计算分数减法,得到,最后根据两个互为倒数的数相乘为1,即可得到答案;
④乘法分配律是指两个数的和与一个数相乘,可以先把它们分别与这个数相乘,再相加;先根据乘法分配律得到原式=,然后约分计算分数乘法,最后计算加减法即可。
26.【答案】
①x:4=2:5
解:5x=4×2
5x=8
5x÷5=8÷5
x=1.6

解:
x=6
【知识点】应用等式的性质2解方程;应用比例的基本性质解比例;列方程解关于百分数问题
【解析】【分析】比例的基本性质:两个内项的积等于两个外项的积;
等式的性质2:等式两边同时乘或除以同一个不为0的整式,等式仍然成立;
①根据比例的基本性质,得到5x=4×2,计算整数乘法后再根据等式的性质2,将等式两边同时除以5,即可得到x的值;
②先将百分数化为分数,计算等式左边,得到,最后根据等式的性质2,将等式两边同时除以,即可得到x的值。
27.【答案】(1)
(2)
【知识点】图形的缩放;作旋转后的图形
【解析】【分析】(1)根据旋转的特征,将图形A绕点O逆时针旋转90°,点O位置不变,其余各部分均绕此点按相同方向旋转相同度数,即可画出旋转后的图形;
(2)图形B的长是3,宽是2,按2:1放大后得到的图形C的长是3×2=6,宽是2×2=4,据此画出图形C即可。
28.【答案】(1)解:2千克=2000克
2000÷(50×5)
=2000÷250
=8(天)
答:张老师一家5口人,买这样的一包杂粮大约够张老师全家吃8天.
(2)解:59×4=236(元)
236-20=216(元)
答:张老师买4盒要花216元。
【知识点】千克与克之间的换算与比较;用连除解决实际问题;单价、数量、总价的关系及应用
【解析】【分析】(1)已知每人每天大约需要吃50克杂粮,而张老师一家5口人,利用乘法得到张老师一家一天需要吃50×5=250(克)杂粮,而一种杂粮一包净含量为2千克,也就是2000克(1千克=1000克),根据除法用总克重除以张老师一家每天要吃的杂粮克数,即可得到能够出多少天;
(2)根据总价=单价×数量,计算得出张老师买4盒杂粮要花59×4=236(元),满199元减20元,所以要花236-20=216(元)。
29.【答案】解:我的体重有45千克
45×15%=6.75(千克)
答:我的书包最好不要超过6.75千克。
【知识点】百分数的应用--运用乘法求部分量
【解析】【分析】已知我的体重有45千克,且儿童的负重最好不要超过自身体重的15%,根据百分数的乘法,得到我的书包最好不要超过45×15%=6.75(千克)。
30.【答案】(1)解:×3.14×(6÷2)2×10
=3.14×30
=94.2(立方厘米)
答:这个玩具的体积是94.2立方厘米。
(2)解:(6×6+6×10+6×10)×2
=(36+60+60)×2
=156×2
=312(平方厘米)
答:做这个长方体盒子至少要用312平方厘米纸板。
【知识点】长方体的表面积;圆锥的体积(容积)
【解析】【分析】(1)已知圆锥形玩具的底面直径和高,根据圆锥的体积=π(d÷2)2h,代入数据计算即可;
(2)如果礼物是用一个长方体盒子包装的,那么做这个长方体盒子的长和宽均为6cm,高是10cm,根据长方体的表面积公式:S=(长×宽+长×高+宽×高)×2,代入数据即可得到长方体盒子的表面积,也就是需要纸板的面积。
31.【答案】解:设客轮的速度是5v,货轮的速度是4v
17:30-13:30=4(小时)
(5v+4v)×4=360
9v=90
v=10
5v=5×10=50(千米/小时)
4v=4×10=40(千米/小时)
答:客轮每小时走50千米,货轮每小时走40千米。
【知识点】列方程解相遇问题;比的应用
【解析】【分析】分析题干,在相遇问题中,路程=速度和×相遇时间,根据客轮和货轮的速度比是5:4,假设客轮的速度是5v,货轮的速度是4v,而相遇时间是17:30-13:30=4(小时),可以建立方程(5v+4v)×4=360,解出v的值,分别乘以5和4,即可得到客轮和货轮的速度。
32.【答案】解:设原来淘气有x张邮票
50+x-(x-x)=8
50+x-x+x=8
x=42
x=70
答:原来淘气有70张邮票。
【知识点】列方程解关于分数问题
【解析】【分析】分析题干,首先可以假设原来淘气有x张邮票,淘气把自己的邮票数量的给笑笑,即给笑笑x张邮票,此时淘气有x-x张邮票,笑笑有50+x张邮票,根据这时笑笑的邮票数量比淘气多8张,建立方程50+x-(x-x)=8,解出x的值即可。
33.【答案】(1)
(2)解:(90+40+30)÷200×100%
=160÷200×100%
=0.8×100%
=80%
答:这次实验甲种种子的发芽率是80%。
(3)解:200×20%=40(粒)
(40+40)×85%=68(粒)
68-30=38(粒)
答:第二轮实验的丙种子需要有38粒。
【知识点】扇形统计图的特点及绘制;从单式条形统计图获取信息;从扇形统计图获取信息;百分数的应用--求百分率;百分数的应用--运用乘法求部分量
【解析】【分析】(1)把甲、乙、丙三种玉米种子的总粒数看作单位“1”,用单位“1”减去甲、丙占总粒数的百分率即可求出乙种玉米种子占总粒数的百分率;
(2)根据发芽率=发芽的种子的粒数=总粒数×100%,据此解答即可;
(3) 根据求一个数的百分之几是多少,用乘法求出丙种子原来的粒数,再加上40粒就是第二轮实验时丙种子的粒数,再根据发芽的粒数=种子的总粒数x发芽率,据此求出发芽的种子的粒数,最后再减去第一轮丙种子发芽的粒数即可。
1 / 1广东省湛江市遂溪县遂城第九小学2023年六年级下数学教学质量监测
1.(2023·遂溪期末)2021年5 月11日,第七次全国人口普查数据显示:⑴全国人口共有1411780000人,把横线上的数改写成用“亿”作单位的数是   亿。⑵其中男性人口为7.2334亿人,横线上的数中的数字“2”表示2个   。
【答案】14.1178;千万
【知识点】亿以上数的读写与组成
【解析】【解答】解:(1)1411780000=14.1178亿
(2)7.2334亿=723340000,“2”表示2个千万
故答案为:(1)14.1178;(2)千万。
【分析】改写成用“亿”做单位的数:将小数点向左移动8位,末尾加上“亿”即可;同样将用“亿”做单位的数的小数点向右移动8位可以改写成计数单位是“个”的数;位数从小到大依次是个、十、百、千、万、十万、百万、千万、亿……据此解答即可。
2.(2023·遂溪期末)3吨40千克=   千克    公顷
【答案】3040;0.0406
【知识点】吨与千克之间的换算与比较;公顷、平方千米与平方米之间的换算与比较
【解析】【解答】解:3×1000+40=3040(千克)
406÷10000=0.0406(公顷)
故答案为:3040,0.0406。
【分析】已知1吨=1000千克,1公顷=10000平方米,大单位化为小单位乘以进率,小单位化为大单位除以进率即可。
3.(2023·遂溪期末)根据下图中涂色部分与整个图形的面积关系填写下边算式。
4:   =   =   %=   (填小数)
【答案】16;12;25;0.25
【知识点】百分数与小数的互化;百分数与分数的互化;比与分数、除法的关系
【解析】【解答】解:设小正方形边长为1
整个图形的面积为1×1×4=4
三角形的面积为2×1÷2=1
1:4=4:16==25%=0.25
故答案为:16,12,25,0.25。
【分析】首先观察图形,整个图形由四个相同的小正方形组成,涂色部分是一个三角形,其底等于两个小正方形的边长之和,高也等于一个小正方形的边长。设小正方形边长为1,因此整个图形的面积为:1×1×4=4,三角形的面积为:2×1÷2=1;因此三角形面积占整个图形的面积的比例为:1÷4=;=4:16;=;=25%=0.25,据此解答即可。
4.(2023·遂溪期末)淘气今年a岁,笑笑的年龄是淘气的4倍,笑笑今年   岁,奇思的年龄比淘气2倍少1岁,奇思今年   岁。
【答案】4a;2a-1
【知识点】年龄问题
【解析】【解答】解:笑笑今年4a岁
奇思今年2a-1岁
故答案为:4a,2a-1。
【分析】根据题意,淘气今年a岁,笑笑的年龄是淘气的4倍,那么笑笑的年龄就是4个a岁,用乘法计算,即4a岁;奇思的年龄比淘气的2倍少1岁,那么奇思的年龄就是2个a岁减去1岁,用乘法和减法计算,即(2a-1)岁。
5.(2023·遂溪期末)一个圆柱体橡皮泥,底面积是15平方厘米,如果把它捏成同样高的圆锥,这个圆锥底面积是   平方厘米。
【答案】45
【知识点】圆柱与圆锥体积的关系
【解析】【解答】解:15×3=45(平方厘米)
故答案为:45。
【分析】已知等底等高的圆柱的体积是圆锥体积的3倍,根据圆柱的体积公式:S=Sh,圆锥的体积公式:S=Sh,当圆柱和圆锥的体积均相等时,我们可以得到S圆柱h=S圆锥h,进而根据可以得到S圆柱=S圆锥,也就是说圆锥的底面积是圆柱的3倍,据此解答即可。
6.(2023·遂溪期末)体育锻炼标准规定:六年级女生1分钟跳绳达到152个为优秀,如果超过152的个数用正数表示,那么晶晶班上的10名女生的成绩分别记作:+3,+11,-3,0,-5,+7,+13,-4,-2,0。则这10名女生1分钟跳绳的平均成绩是   个,这10名女生1分钟跳绳的成绩最好的和最差的相差   个。
【答案】154;18
【知识点】平均数的初步认识及计算;正、负数的意义与应用
【解析】【解答】解:(+3+11-3+0-5+7+13-4-2+0)÷10+152
=20÷10+152
=154(个)
13+5=18(个)
故答案为:154,18。
【分析】已知标准数是152个,将所有数相加可以得到10名女生的乘积共超过标准数+3+11-3+0-5+7+13-4-2+0=20(个),根据平均数=总数÷人数,得到平均数超出标准数20÷10=2(个),再加上标准数152个,得到平均成绩是152+2=154(个);成绩最好的记作+13,成绩最差的记作-5,相差13+5=18,所以这10名女生1分钟跳绳的成绩最好的和最差的相差18个。
7.(2023·遂溪期末)下图中的7个点连在一起形成了两个完全一样的长方形,其中2个点的位置用数对表示分别是(1,5)、(5,1)。请写出A点和B点的数对。
A点的数对是   ;B点的数对是   。
【答案】(5,3);(9,1)
【知识点】数对与位置
【解析】【解答】解:A点的数对是(5,3);B点的数对是(9,1)。
故答案为:(5,3);(9,1)。
【分析】数对中第一个数表示列,第二个数表示行。根据两个点所在的列与行可知,长方形的长有4个单位长度,宽有2个单位长度,那么A点在5列3行,B点在9列1行,由此用数对表示即可。
8.(2023·遂溪期末)淘气手绘了一幅地图,用图上4厘米的长度表示从家到公园 200米的长度,这幅地图的比例尺是   ,如果淘气家到学校的实际距离是 1500米,那在这幅地图上应画   厘米。
【答案】1:5000;30
【知识点】比例尺的认识;应用比例尺求图上距离或实际距离
【解析】【解答】解:比例尺=4厘米:200米
=4厘米:20000厘米
=1:5000
1500米=150000厘米
150000×=30(厘米)
故答案为:1:5000,30。
【分析】已知比例尺=图上距离:实际距离,所以可以得到此题的比例尺=4厘米:200米,再根据1米=100厘米,得到比例尺=4厘米:20000厘米,根据比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变 ,化简得到比例尺是1:5000;进而根据图上距离=实际距离×比例尺,代入数据计算即可得出淘气家到学校的图上距离。
9.(2023·遂溪期末)一个正方形的边长增加它的 后,得到新正方形的面积是100 平方厘米,则原来正方形的周长是   厘米,原来正方形的面积是   平方厘米。
【答案】32;64
【知识点】正方形的周长;分数除法的应用;正方形的面积
【解析】【解答】解:100=10×10
10÷(1+)=8(厘米)
8×4=32(厘米)
8×8=64(平方厘米)
故答案为:32,64。
【分析】已知新正方形的面积是100平方厘米,根据正方形的面积公式:S=边长×边长,得到新正方形的边长是10厘米,所以原来正方形的边长增加后是10厘米,根据分数除法得到原来正方形的边长是10÷(1+)=8(厘米),进而根据正方形的周长=边长×4,面积=边长×边长,代入数据计算即可得到答案。
10.(2023·遂溪期末)下面说法比较符合实际的是(  )。
A.一包盐约重 250千克 B.淘气1分钟跑了2千米
C.教室门的面积约2平方分米 D.笑笑家6月用水量约20立方米
【答案】D
【知识点】千克的认识与使用;千米的认识与使用;平方厘米、平方分米、平方米的认识与使用;体积的认识与体积单位;数学常识
【解析】【解答】解:A:一包盐约重250克
B:淘气1分钟跑了200米
C:教室门的面积约2平方米
D:笑笑家6月用水量约20立方米
故答案为:D。
【分析】长度单位:千米(公里)、米、分米、厘米、毫米,1千米=1000米,1米=10分米=100厘米,1分米=10厘米,1厘米=10毫米;面积单位:平方米、平方分米、平方厘米,1平方米=100平方分米,1平方分米=100平方厘米;体积单位:立方米、立方分米、立方厘米,1立方米=1000立方分米,1立方分米=1000立方厘米;质量单位:吨、千克(公斤)、克,1吨=1000千克,1千克=1000克。一般的,面积相邻两个单位是100;体积、容积、质量相邻两个单位进率是1000;根据生活常识据此解答即可。
11.(2023·遂溪期末)下图是一个正方体的展开图,折叠后“祝”所对的是(  )字。
A.学 B.业 C.进 D.步
【答案】B
【知识点】正方体的展开图
【解析】【解答】解:折叠后“祝”所对的是业字。
故答案为:B。
【分析】相对面的特征:三个正方形排成一排的两端;“Z”字形的两端。
12.(2023·遂溪期末)在下列我们学过的图形分类关系图中,错误的是(  )。
A. B.
C. D.
【答案】A
【知识点】三角形的分类;平行四边形的特征及性质;长方体的特征;圆柱的特征
【解析】【解答】解:三角形不仅包括等腰三角形和等边三角形,还有不等边三角形
故答案为:A。
【分析】三角形按边分为等腰三角形、等边三角形和不等边三角形;四边形就是四条线段围成的图形,有四条边,四个角;平行四边形对边平行;长方体、正方体即圆锥、圆柱都是立体图形,据此选择。
13.(2023·遂溪期末)下面各组的两个比,能组成比例的有(  )组。
⑴18:15和0.6:0.5 ⑵和.
⑶0.4:0.8和0.5:0.2 ⑷16:8和1.2:0.6
A.1 B.2 C.3 D.4
【答案】B
【知识点】比例的认识及组成比例的判断
【解析】【解答】解:(1)18:15=,0.6:0.5=,能组成比例
(2):=4≠,不能组成比例
(3)0.4:0.8=,0.5:0.2=≠,不能组成比例
(4)16:8=2,1.2:0.6=2,能组成比例
故答案为:B。
【分析】首先根据比值=前项÷后项,计算出每个选项中两个比的比值,然后根据两个比值相等的比可以组成比例解得即可。
14.(2023·遂溪期末)在下图中添上一个同样的小正方体,使它从前面和左面观察所看到的图形与现在的图形从前面和左面所观察到的图形一样,下面符合要求的是(  )。
A. B.
C. D.
【答案】D
【知识点】从不同方向观察几何体
【解析】【解答】解:D:从前面观察到的图形是3个并排的小正方体,从左面观察到的图形是2个并排的小正方体
故答案为:D。
【分析】添上的小正方体只能位于从上面看第二行单独小正方体的左边,据此解答即可。
15.(2023·遂溪期末)下列说法中错误的是(  )
A.既是质数又是偶数的自然数是2 B.最小的自然数是1
C.1既不是质数,也不是合数 D.没有最大的自然数
【答案】B
【知识点】合数与质数的特征
【解析】【解答】解:A:既是质数又是偶数的自然数是2 ,说法正确;
B:最小的自然数是0,原题说法错误;
C:1既不是质数,也不是合数 ,说法正确;
D:没有最大的自然数,说法正确。
故答案为:B。
【分析】自然数是从0开始的,最小的自然数是0。
16.(2023·遂溪期末)如果一个三角形的两条边的长分别是6cm和9cm,那么第三条边的长可能是(  )cm。
A.1 B.2 C.3 D.4
【答案】D
【知识点】三角形的特点
【解析】【解答】解:9-6=3(cm)。9+6=15(cm),所以第三边的长度大于3cm,小于15cm,可能是4cm。
故答案为:D。
【分析】三角形任意两边之和大于第三边,任意两边之差小于第三边。所以第三条边的长度大于另外两条边长度差,小于另外两条边长度和。
17.(2023·遂溪期末)奇思用2、6、7三张数字卡片摆成了许多三位数,她所摆成的三位数一定是(  )的倍数。
A.7 B.6 C.3 D.2
【答案】C
【知识点】3的倍数的特征
【解析】【解答】解:2+6+7=15
15÷3=5
故答案为:C。
【分析】观察数字卡片,2、6、7有奇数有偶数,所以不一定是2的倍数,更不一定是6和7的倍数;而2+6+7=15,15是3的倍数,所以根据3的倍数的特征:每个数位上的数的和相加是3的倍数,得到摆成的三位数一定是3的倍数。
18.(2023·遂溪期末)口袋中有大小、材质相同的红球3个,白球4个,黄球5个,从中摸出一个球,摸到(  )可能性最大。
A.红球 B.黄球 C.白球 D.无法确定
【答案】B
【知识点】可能性的大小
【解析】【解答】解:5最大,摸到黄球的可能性最大。
故答案为:B。
【分析】事件发生的可能性是有大小的,可能性的大小与它在总数中所占数量的多少有关,在总数中占的数量多,摸到的可能性就大,占的数量小,摸到的可能性就小。
19.(2023·遂溪期末)银行在学校东偏南60°方向,那么学校在银行(  )方向。
A.东偏北60° B.西偏北30° C.北偏西30° D.西偏南30°
【答案】C
【知识点】根据东、西、南、北方向确定位置
【解析】【解答】解:学校在银行西偏北60°方向或北偏西30°方向。
故答案为:C。
【分析】甲在乙什么方向和乙在甲什么方向,他们的关系是:方向刚好相反。
20.(2023·遂溪期末)如图,表示笑笑骑车从家到图书馆看书然后返回家的过程中离家的距离与时间的变化关系。下面说法错误的是(  )。
A.笑笑家到图书馆的距离是5千米
B.笑笑去图书馆的骑车速度是10千米/小时
C.笑笑在图书馆停留了2小时
D.笑笑从图书馆返回家用了0.5小时
【答案】C
【知识点】速度、时间、路程的关系及应用;用图像表示变化关系
【解析】【解答】解:5÷0.5=10(千米/小时)
2-0.5=1.5(小时)
2.5-0.5=2(小时)
故答案为:C。
【分析】观察图像,斜线表示骑车时间,水平线表示在图书馆的停留时间,所以可以得到在图书馆的停留时间是2-0.5=1.5(小时);根据速度=路程÷时间,得到笑笑的骑车速度是5÷0.5=10(千米/小时);据此结合图像解答即可。
21.(2023·遂溪期末)下面是奇思、妙想、淘气、笑笑四位同学跳远成绩记录,由于记录时不小心记乱了,现知道淘气成绩最好,妙想比笑笑跳得远,但比奇思跳得近。
奇思 妙想 淘气 笑笑
3.80m 3.90m 3.85m 4.03m
妙想的跳远成绩是 (  )m.
A.3.80 B.4.03 C.3.85 D.3.90
【答案】C
【知识点】逻辑推理
【解析】【解答】解:淘气的成绩是4.03m
奇思的成绩是3.9m
妙想的成绩是2.85m
笑笑的成绩是3.8m
故答案为:C。
【分析】已知淘气的成绩最好,所以淘气的成绩是4.03m;又已知妙想比笑笑跳得远,但比奇思跳得近,所以奇思的成绩>妙想的成绩>笑笑的成绩,据此得到妙想的成绩是3.85m。
22.(2023·遂溪期末)李大伯的果园里现有12排棵树,每排25棵,一共有多少棵树?列竖式计算如图,竖式中箭头所指的数表示(  )。
A.1排果树的棵数 B.2排果树的棵数
C.10 排果树的棵数 D.12 排果树的棵数
【答案】C
【知识点】两位数乘两位数的笔算乘法(进位)
【解析】【解答】解:25表示25与十位上的1相乘也就是10个25的乘积,即10排果树的棵数
故答案为:C。
【分析】第二个乘数十位上的数字“1”表示1个10,用它乘第一个乘数25(每排树的棵数),是求10个25是多少(即10排果树的棵数)。
23.(2023·遂溪期末)用小棒按照下面的方式摆图形,第(  )个图形刚好用了 631 根小棒。
A.125 B.126 C.127 D.128
【答案】B
【知识点】数形结合规律
【解析】【解答】解:6+5(n-1)=631
6+5n-5=631
5n=630
n=126
故答案为:B。
【分析】观察图形发现:第一个图形需要6根小棒,多一个正六边形,多用5根小棒,则第n个图形中,需要小棒6+5(n-1),求第几个图形刚好用了 631 根小棒,可以建立等式6+5(n-1)=631,解出n的值即为答案。
24.(2023·遂溪期末)直接写出得数。
①12×0.5= ②0.45×0.6= ③0×76=
④ ⑤ ⑥1.39+0.1=
【答案】
①12×0.5=6 ②0.45×0.6=0.27 ③0×76=0
④6 ⑤ ⑥1.39+0.1=1.49
【知识点】小数乘整数的小数乘法;小数乘小数的小数乘法;分数与小数相乘;除数是分数的分数除法;含0的乘法
【解析】【分析】算式中同时存在分数、小数、百分数其中两种或两种以上时,化为同一种数再计算;
小数加减法:对齐小数点,然后按照整数加减法进行计算,最后在对应位置点上小数点即可;
小数乘法:将小数点向右移动使小数变为整数,然后计算整数乘法,最后将得到的积的小数点向左移动相同的倍数;
分数乘法:分子乘分子,分母成分母,能约分的约分;
分数除法:一个数除以一个分数等于乘以这个分数的倒数,据此将分数除法转化为分数乘法计算;
0乘以任何数的积都是0。
25.(2023·遂溪期末)用你喜欢的方法计算。(需写出计算过程)
①13.62-2.84+6.38-7.16 ②
③④
【答案】解:①13.62-2.84+6.38-7.16
=(13.62+6.38)-(2.84+7.16)
=20-10
=10

=
=
=

=
=
=1

=
=14+12-8
=18
【知识点】小数加减混合运算;分数乘法与分数加减法的混合运算;分数除法与分数加减法的混合运算;分数乘除法混合运算;分数乘法运算律
【解析】【分析】①加法交换律指两个加数相加,交换加数的位置,和不变;加法结合律是指三个数相加,先把前两个数相加,再加上第三个数;根据加法交换律和加法结合律可以得到原式=(13.62+6.38)-(2.84+7.16),然后根据小数加减法依次计算即可;
②首先根据一个数除以另一个数等于乘以另一个数的倒数,得到原式=,然后约分计算分数乘法即可;
③根据运算顺序:先乘除后加减,有括号的先计算括号内的式子,先计算小括号内的加法,再将除法转化为乘法得到原式=,接着计算分数减法,得到,最后根据两个互为倒数的数相乘为1,即可得到答案;
④乘法分配律是指两个数的和与一个数相乘,可以先把它们分别与这个数相乘,再相加;先根据乘法分配律得到原式=,然后约分计算分数乘法,最后计算加减法即可。
26.(2023·遂溪期末)解方程。(需写出计算过程)
①x:4=2:5 ②
【答案】
①x:4=2:5
解:5x=4×2
5x=8
5x÷5=8÷5
x=1.6

解:
x=6
【知识点】应用等式的性质2解方程;应用比例的基本性质解比例;列方程解关于百分数问题
【解析】【分析】比例的基本性质:两个内项的积等于两个外项的积;
等式的性质2:等式两边同时乘或除以同一个不为0的整式,等式仍然成立;
①根据比例的基本性质,得到5x=4×2,计算整数乘法后再根据等式的性质2,将等式两边同时除以5,即可得到x的值;
②先将百分数化为分数,计算等式左边,得到,最后根据等式的性质2,将等式两边同时除以,即可得到x的值。
27.(2023·遂溪期末)将下面方格纸中的图形A按要求进行操作。
(1)将图形A绕点O逆时针旋转90°后得到的图形B。
(2)将图形B按2:1放大后得到图形C。
【答案】(1)
(2)
【知识点】图形的缩放;作旋转后的图形
【解析】【分析】(1)根据旋转的特征,将图形A绕点O逆时针旋转90°,点O位置不变,其余各部分均绕此点按相同方向旋转相同度数,即可画出旋转后的图形;
(2)图形B的长是3,宽是2,按2:1放大后得到的图形C的长是3×2=6,宽是2×2=4,据此画出图形C即可。
28.(2023·遂溪期末)研究表明,吃杂粮有益于身体健康,每人每天大约需要吃50克杂粮。一种杂粮一包净含量为2千克。
(1)张老师一家5口人,买这样的一包杂粮大约够张老师全家吃多少天?
(2)这种杂粮售价为每盒59元,春节期间超市开展促销活动如下:
①满299元减30元;
②满199 元减20元:
③满159 元减15元
按照这样的优惠方式,张老师买4盒要花多少元?
【答案】(1)解:2千克=2000克
2000÷(50×5)
=2000÷250
=8(天)
答:张老师一家5口人,买这样的一包杂粮大约够张老师全家吃8天.
(2)解:59×4=236(元)
236-20=216(元)
答:张老师买4盒要花216元。
【知识点】千克与克之间的换算与比较;用连除解决实际问题;单价、数量、总价的关系及应用
【解析】【分析】(1)已知每人每天大约需要吃50克杂粮,而张老师一家5口人,利用乘法得到张老师一家一天需要吃50×5=250(克)杂粮,而一种杂粮一包净含量为2千克,也就是2000克(1千克=1000克),根据除法用总克重除以张老师一家每天要吃的杂粮克数,即可得到能够出多少天;
(2)根据总价=单价×数量,计算得出张老师买4盒杂粮要花59×4=236(元),满199元减20元,所以要花236-20=216(元)。
29.(2023·遂溪期末)在“双减”背景下,要减轻儿童的书包重量,让儿童健康成长。实验表明:儿童的负重最好不要超过自身体重的15%。如果儿童长期背过重书包,会妨碍骨骼生长。估一估,你的体重有多少千克(估值取整数)?算一算,你的书包最好不要超过多少千克?
【答案】解:我的体重有45千克
45×15%=6.75(千克)
答:我的书包最好不要超过6.75千克。
【知识点】百分数的应用--运用乘法求部分量
【解析】【分析】已知我的体重有45千克,且儿童的负重最好不要超过自身体重的15%,根据百分数的乘法,得到我的书包最好不要超过45×15%=6.75(千克)。
30.(2023·遂溪期末)六一儿童节这天,爸爸送给奇思一个圆锥形玩具(如图)
(1)这个玩具的体积是多少立方厘米?
(2)如果礼物是用一个长方体盒子包装的,那么做这个长方体盒子至少要用多少平方厘米纸板?
【答案】(1)解:×3.14×(6÷2)2×10
=3.14×30
=94.2(立方厘米)
答:这个玩具的体积是94.2立方厘米。
(2)解:(6×6+6×10+6×10)×2
=(36+60+60)×2
=156×2
=312(平方厘米)
答:做这个长方体盒子至少要用312平方厘米纸板。
【知识点】长方体的表面积;圆锥的体积(容积)
【解析】【分析】(1)已知圆锥形玩具的底面直径和高,根据圆锥的体积=π(d÷2)2h,代入数据计算即可;
(2)如果礼物是用一个长方体盒子包装的,那么做这个长方体盒子的长和宽均为6cm,高是10cm,根据长方体的表面积公式:S=(长×宽+长×高+宽×高)×2,代入数据即可得到长方体盒子的表面积,也就是需要纸板的面积。
31.(2023·遂溪期末)甲乙两个港口的航线长360千米,一艘客轮在13:30从甲港开往乙港,一艘货轮同时从乙港开往甲港,两船在当天17∶30相遇,已知客轮和货轮速度比是5:4。求客轮、货轮每小时各走多少千米?
【答案】解:设客轮的速度是5v,货轮的速度是4v
17:30-13:30=4(小时)
(5v+4v)×4=360
9v=90
v=10
5v=5×10=50(千米/小时)
4v=4×10=40(千米/小时)
答:客轮每小时走50千米,货轮每小时走40千米。
【知识点】列方程解相遇问题;比的应用
【解析】【分析】分析题干,在相遇问题中,路程=速度和×相遇时间,根据客轮和货轮的速度比是5:4,假设客轮的速度是5v,货轮的速度是4v,而相遇时间是17:30-13:30=4(小时),可以建立方程(5v+4v)×4=360,解出v的值,分别乘以5和4,即可得到客轮和货轮的速度。
32.(2023·遂溪期末)淘气和笑笑都喜欢收集邮票,笑笑有50张邮票,如果淘气把自己的邮票数量的 给笑笑,这时笑笑的邮票数量比淘气多8张,原来淘气有多少张邮票?
【答案】解:设原来淘气有x张邮票
50+x-(x-x)=8
50+x-x+x=8
x=42
x=70
答:原来淘气有70张邮票。
【知识点】列方程解关于分数问题
【解析】【分析】分析题干,首先可以假设原来淘气有x张邮票,淘气把自己的邮票数量的给笑笑,即给笑笑x张邮票,此时淘气有x-x张邮票,笑笑有50+x张邮票,根据这时笑笑的邮票数量比淘气多8张,建立方程50+x-(x-x)=8,解出x的值即可。
33.(2023·遂溪期末)学校科学小组用甲、乙、丙三种玉米种子共200粒进行实验。
(1)如图1,请补充完整玉米种子实验数量的扇形统计图。
(2)如图2,这次实验甲种种子的发芽率是多少?
玉米种子发芽数量条形统计图
(3)现在增加丙种子40粒进行第二轮实验,要想两轮实验过后丙种子的发芽率达到85%,第二轮实验的丙种子需要有多少粒发芽?
【答案】(1)
(2)解:(90+40+30)÷200×100%
=160÷200×100%
=0.8×100%
=80%
答:这次实验甲种种子的发芽率是80%。
(3)解:200×20%=40(粒)
(40+40)×85%=68(粒)
68-30=38(粒)
答:第二轮实验的丙种子需要有38粒。
【知识点】扇形统计图的特点及绘制;从单式条形统计图获取信息;从扇形统计图获取信息;百分数的应用--求百分率;百分数的应用--运用乘法求部分量
【解析】【分析】(1)把甲、乙、丙三种玉米种子的总粒数看作单位“1”,用单位“1”减去甲、丙占总粒数的百分率即可求出乙种玉米种子占总粒数的百分率;
(2)根据发芽率=发芽的种子的粒数=总粒数×100%,据此解答即可;
(3) 根据求一个数的百分之几是多少,用乘法求出丙种子原来的粒数,再加上40粒就是第二轮实验时丙种子的粒数,再根据发芽的粒数=种子的总粒数x发芽率,据此求出发芽的种子的粒数,最后再减去第一轮丙种子发芽的粒数即可。
1 / 1

展开更多......

收起↑

资源列表