资源简介 绝密★启用前2025年普通高等学校招生全国统一考试(全国一卷)(限时:120分钟满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,1.(1+5i)i的虚部为A.-1B.0C.1D.62.已知集合U={xx是小于9的正整数},A={1,3,5},则CA中元素的个数为的A.0B.3C.5D.83.已知双曲线C的虚轴长是实轴长的√7倍,则C的离心率为郑A.√2B.2C.√7D.2√24.已知点(a,0)(a>0)是函数y=2tan(x-否)的图象的一个对称中心,则a的最小值为(ABcD北5.已匆知f)是定义在R上且周期为2的偶函数,当2<<3时,)=5-2x,则-)=(A.-12B.-1cD6.帆船比赛中,运动员可借助风力计测定风速的大小与方向,测出的结果在航海学中称为视风风速.视风风速对应的向量是真风风速对应的向量与船行风风速对应的向量之和,其中船行风风速对应的向量与船速对应的向量大小相等,方向相反.图1给出了部分风力等级、名称与风速大小的对应关系,已知某帆船运动员在某时刻测得的视风风速对应的向量与船速对应的向量虹如图2所示(线段长度代表速度大小,单位:/s),则该时刻的真风为等级名称风速大小(单位:m/s)2轻风1.63.3视风风速3微风3.45.44和风5.57.9船速023闲5劲风8.0-10.7图2图1A.轻风B.微风C.和风D.劲风7.已知圆x2+(y十2)2=r2(r>0)上到直线y=√3x十2的距离为1的点有且仅有两个,则r的取值范围是A.(0,1)B.(1,3)C.(3,十∞)D.(0,十∞)8.已知2+log2x=3+log3y=5十log之,则x,y,之的大小关系不可能为A.I>y>zB.>>yC.y>x>xD.y>>x2025·1(4二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.在正三棱柱ABC一A,B,C1中,D为BC的中点,则A.AD⊥ACB.BC1⊥平面AADC.AD∥ABD.CC∥平面AAD10.已知抛物线C:y=6x的焦点为F,过F的一条直线交C于A,B两点,过A作直线l:x=多的垂线,垂足为D,过下且与直线AB垂直的直线交1于点E,则A.AD=AFB.AE=ABC.AB≥6D.AE·BE≥181.已知△ABC的面积为,cos2A+cos2B+2sinC-2,oAcos Bsin C-},则()A.sin C=sinA+sin2BB.AB=√2C.sin A+sin B=6D.AC+BC=32三、填空题:本题共3小题,每小题5分,共15分.12.若直线y=2x十5是曲线y=e十x十a的一条切线,则a=13.若一个等比数列的各项均为正数,且前4项的和等于4,前8项的和等于68,则这个数列的公比等于14.有5个相同的球,分别标有数字1,2,3,4,5,从中有放回地随机取3次,每次取1个球.记X为这5个球中至少被取出1次的球的个数,则X的数学期望E(X)=四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤。15.(13分)为研究某疾病与超声波检查结果的关系,从做过超声波检查的人群中随机调查了1000人,得到如下列联表:超声波检查结果组别合计正常不正常患该疾病20180200未患该疾病78020800合计8002001000(1)记超声波检查结果不正常者患该疾病的概率为p,求p的估计值;(2)根据小概率值α=0.001的独立性检验,分析超声波检查结果是否与患该疾病有关.n(ad-bc)2附:X=(a+b)(c十d)(a+c)(b+d0P(X≥k)0.0500.0100.0013.8416.63510.8282025·2(4)参芳答案2025年普通高等学校招生全国统一考试:9.BDA.由三棱柱的性质可知,AA1⊥平面ABC,则AA1⊥(全国一卷)AD,假设AD⊥A1C,又AA1∩A1C=A1,AA1,A1CC平面1.C(1十5i)i=-5十i,其虚部为1.故选C.AA1C1C,所以AD⊥平面AA1CC,矛盾,所以AD与A1C2.CU={1,2,3,4,5,6,7,8},A={1,3,5},故CuA={2,4,不垂直,A错误;B.因为三棱柱ABCA1B1C1是正三棱柱,6,7,8},故CvA中有5个元素.故选C.所以AA1⊥平面ABC,则AA1⊥BC,因为D为BC的中3.D依题意得b=√7a,又c2=a2十b2,所以c2=a2+(W7a)2点,AC=AB,所以AD⊥BC,又AD∩AA1=A,AD,AA1C平面AA1D,所以BC⊥平面AA1D,又BC∥B1C1,所以=8a2,即c=2√2a,故e=2W2.故选D.B1C1⊥平面AA1D,B正确;C.AB∥A1B1,AD与AB相4.B令x-吾-经及∈Z得x=经+哥∈Z,故y交,所以AD与A1B1异面,C错误;D.CC1∥AA1,CC1丈平面AA1D,AA1C平面AA1D,所以CC1∥平面AA1D.故21am(x-晋)的因象的对称中心为(经+受0)∈Z,由选BD10.ACDA.直线1为抛物线的准线,由抛物线的定义,可知题意知a=经+骨,k∈N,共最小位为骨故选BAD=AF1.A正确:B.当AB⊥x轴时,A(受3,B5.A当x∈[-1,0]时,-x+2∈[2,3],所以当x∈[-1,0]时,f(x)=f(一x)=f(-x十2)=5-2(一x十2)=1十2x,(受,-3E(-号,0,AB=6AE=3E,此时所以f(-)=1-=-分故选A.AE≠|AB.B错误;C.易知直线AB的斜率不为0,设直6.A真风风速对应的向量=视风风速对应的向量一船行风线AB:x=my十子A().B(x8:2),由风速对应的向量=视风风速对应的向量十铅速对应的向量=AB,如图,AB引=2√2∈(1.6,3.3),故选A.x=my十2,得y2-6my-9=0,则y1十y2=6m,y1y:y2=6x3=-9,x1十x2=m(y1十y2)十3=6m2+3,AB|=x1十x2十3=6m2+6≥6.C正确;D.当m=0,即AB⊥x轴时,A船速由B知,|AE引=|BE|=3√2,|AE|·|BE=18.当m≠00123x7.B易得圆心(0,一2)到直线y=√3x十2的距离d=2.当r时,直线EF:=-品y+子,E(3m)EF到=d-1=1时,圆x2十(y十2)2=r2(r>0)上到直线y=VS+9m,S△B=号AE·BElsin∠AEB=AB√3x十2的距离为1的点有且仅有一个,当r=d十1=3时,圆x2十(y十2)2=2(r>0)上到直线y=√3x十2的距离为·EF1=26+6m3)V9+9m=91+m)>g.所1的点有且仅有三个,故当1<<3时,國x2十(y十2)2=18r2(r>0)上到直线y=√3x十2的距离为1的点有且仅有两以AE·BE>sm∠AEB>18.综上,AE·|BE≥个,故选B.18,D正确.故选ACD.8.B解法-令2+log2,x=3+log3y=5十1og52=0,得x=11.ABCA.cos2A十cos2B+2sinC=1-2sin2A+1-y=7=此时>y>◆2+logx=3+1ogy112sin2B十2sinC=2,所以sin2A十sin2B=sinC,A正确;=5十10g5z=5,得x=8,y=9,z=1,此时y>x>z:令2十B令a=BC.6=AC,c=AB,则ABC=2Rlog2x=3+log3y=5+log5x=8,得x=26=64,y=35=(R为△ABC的外接圆半径),由sin2A+sin2B=sinC,得243,x=53=125,此时y>>x.故选B.a2+62=c·2R≥c2.若a2+b2>c2,则△ABC为锐角三角解法二设2+log2x=3+log3y=5+log5之=t,则x=形,则A+B>受,即A>-B,则sinA>in(2-B)2-2=f(t),y=3-3=g(t),x=5-5=h(t),在同一平面直角坐标系中画出函数f(t),g(t),h(t)的图象,(提示:可先cosB,所以sinC=sin2A十sin2B>cos2B+sin2B=1,矛画出y=2,y=3,y=5的图象,然后分别向右平移2,3,5盾.故a2+62=2,即C=A+B=受,所以cos(A+B)个单位长度,即可得到函数f(t),g(),h(t)的图象)cos Acos B-sin Asin B=0.cos Acos Bsin C=ycos AcosB-}所以sin AsinB-子因为SAcy=(r)bnC-子6=所以b=合所以nnB1ab1y=ft)《2R)2名=2,所以2R=2,所以c=2R·snC=2,B=h〔0正确;C.(sinA十sinB)2=sin2A+sin2B+2 sin Asin B=由图可知x,y,之的关系不可能为x>之>y,故选BsinC+2 2sin Asin B=1+2x号=2,所以simA+sinB=-1 展开更多...... 收起↑ 资源列表 2025年普通高等学校招生全国统一考试(全国一卷).pdf 数学高考题答案.pdf