22.2 二次函数与一元二次方程 课件 (共21张PPT) 2025-2026学年人教版初中数学九年级上册

资源下载
  1. 二一教育资源

22.2 二次函数与一元二次方程 课件 (共21张PPT) 2025-2026学年人教版初中数学九年级上册

资源简介

(共21张PPT)
22.2 二次函数与一元二次方程
第二十二章 二次函数
1.通过探索,理解二次函数与一元二次方程(不等式)之间的联系.
2.能运用二次函数及其图象、性质确定方程的解或不等式的解集.
3.了解用图象法求一元二次方程的近似根.
重点:方程(不等式)与函数之间的联系,会利用二次函数的图象求一元二次方程的近似解.
难点:二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.
学习目标
问题 如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线,如果不考虑空气的阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系:
h=20t-5t2,
考虑以下问题:
问题导入
二次函数与一元二次方程的关系
(1)球的飞行高度能否达到15m?如果能,需要多少飞行时间?
O
h
t
15
1
3
∴当球飞行1s或3s时,它的高度为15m.
解:解方程 15=20t-5t2,
t2-4t+3=0,
t1=1,t2=3.
你能结合上图,指出为什么在两个时间小球的高度为15m吗?
h=20t-5t2
探究新知
(2)球的飞行高度能否达到20m?如果能,需要多少飞行时间?
你能结合图形指出为什么只在一个时间小球的高度为20m吗?
O
h
t
20
2
解方程:
20=20t-5t2,
t2-4t+4=0,
t1=t2=2.
当球飞行2s时,它的高度为20m.
h=20t-5t2
(3)球的飞行高度能否达到20.5m?为什么?
O
h
t
你能结合图形指出为什么球不能达到20.5m的高度吗
20.5
解方程:
20.5=20t-5t2,
t2-4t+4.1=0,
因为(-4)2-4 ×4.1<0,
所以方程无解.
即球的飞行高度达不到20.5m.
h=20t-5t2
(4)球从飞出到落地要用多少时间?
O
h
t
0=20t-5t2,
t2-4t=0,
t1=0,t2=4.
当球飞行0s和4s时,它的高度为0m.
即0s时小球从地面飞出,4s时小球落回地面.
h=20t-5t2
从上面发现,二次函数y=ax2+bx+c何时为一元二次方程
一般地,当y取定值且a≠0时,二次函数为一元二次方程.
如:y=5时,则5=ax2+bx+c(a≠0)就是一个一元二次方程.
为一个常数(定值)
所以二次函数与一元二次方程关系密切.
例如,已知二次函数y = -x2+4x的值为3,求自变量x的值,可以解一元二次方程-x2+4x=3(即x2-4x+3=0).
反过来,解方程x2-4x+3=0 又可以看作已知二次函数 y = x2-4x+3 的值为0,求自变量x的值.
一元二次方程与二次函数紧密地联系起来了.
利用二次函数深入讨论一元二次方程
观察思考下列二次函数的图象与x轴有公共点吗?如果有,公共点的横坐标是多少?当x取公共点的横坐标时,函数的值是多少?由此你能得出相应的一元二次方程的根吗?
(1)y=x2-x+1;
(2)y=x2-6x+9;
(3)y=x2+x-2.
探究新知
思考
1
x
y
O
y = x2-6x+9
y = x2-x+1
y = x2+x-2
观察图象,完成下表:
抛物线与x轴公共点个数 公共点 横坐标 相应的一元二次方程的根
y = x2-x+1
y = x2-6x+9
y = x2+x-2
0个
1个
2个
x2-x+1=0无解
3
x2-6x+9=0,x1=x2=3
-2, 1
x2+x-2=0,x1=-2,x2=1
二次函数y=ax2+bx+c的图象与x轴交点 一元二次方程ax2+bx+c=0的根 b2-4ac
有两个交点
有两个不相等的实数根
b2-4ac > 0
有两个重合的交点
有两个相等的实数根
b2-4ac = 0
没有交点
没有实数根
b2-4ac < 0
二次函数y=ax2+bx+c的图象与x轴交点的坐标与一元二次方程ax2+bx+c=0根的关系
归纳总结
分析:一元二次方程 x -2x-2=0 的根就是抛物线 y=x -2x-2 与x轴的交点的横坐标,因此我们可以先画出这条抛物线,然后从图上找出它与x轴的交点的横坐标,这种解一元二次方程的方法叫做图象法.
利用二次函数求一元二次方程的近似解
例 利用函数图象求方程x2-2x-2=0的实数根(结果保留小数点后一位).
典型例题
解:画出函数 y=x -2x-2 的图象(如下图),由图象可知,方程有两个实数根,一个在-1与0之间,另一个在2与3之间.
先求位于-1到0之间的根,由图象可估计这个根是-0.8或-0.7,利用计算器进行探索,见下表:
x … -0.8 -0.7 …
y … 0.24 -0.11 …
观察上表可以发现,当x分别取-0.8和-0.7时,对应的y由负变正,可见在-0.8与-0.7之间肯定有一个x使y=0,即有y=x2-2x-2的一个根,题目只要求精确到0.1,这时取x=-0.8或x=-0.7都符合要求.但当x=-0.7时更为接近0.故x1≈-0.7.
同理可得另一近似值为x2≈2.7.
一元二次方程的图象解法
利用二次函数的图象求一元二次方程的近似根.
(1)用描点法作二次函数的图象;
(2)观察估计二次函数的图象与x轴的交点的横坐标;
由图象可知,图象与x轴有两个交点,其横坐标的取值范围,通过取平均数的方法不断缩小根所在的范围 (可将单位长再十等分,借助计算器确定其近似值);
(3)确定方程的解;
由此可知,使二次函数的函数值更接近0的数,即为方程的近似解.
归纳总结
判断方程 ax2+bx+c =0 (a≠0,a,b,c为常数)一个解x的范围是( )
A. 3< x < 3.23 B. 3.23 < x < 3.24
C. 3.24 x 3.23 3.24 3.25 3.26
y=ax2+bx+c -0.06 -0.02 0.03 0.09
C
1.根据下列表格的对应值:
当堂检测
2.若二次函数y=-x2+2x+k的部分图象如图所示,且关于x的一元二次方程-x2+2x+k=0的一个解x1=3,则另一个解x2= .
-1
y
O
x
1
3
3.一元二次方程 3x2+x-10=0的两个根是x1=-2 ,x2= ,那么二次函数 y= 3x2+x-10与x轴的交点坐标是 .
(-2,0) ( ,0)
4.已知函数y=(k-3)x2+2x+1的图象与x轴有交点,求k的取值范围.
解:当k=3时,函数y=2x+1是一次函数.
∵一次函数y=2x+1与x轴有一个交点,
∴k=3;
当k≠3时,y=(k-3)x2+2x+1是二次函数.
∵二次函数y=(k-3)x2+2x+1的图象与x轴有交点,
∴Δ=b2-4ac≥0.
∵b2-4ac=22-4(k-3)=-4k+16,
∴-4k+16≥0.∴k≤4且k≠3.
综上所述,k的取值范围是k≤4.
判别式Δ=b2-4ac
二次函数y=ax2+bx+c (a>0)的图象
一元二次方程ax2+bx+c=0 (a≠0)的根
不等式ax2+bx+c>0(a>0)的解集
不等式ax2+bx+c<0(a>0)的解集
x2
x1
x
y
O
O
x1= x2
x
y
x
O
y
Δ>0
Δ=0
Δ<0
x1 ; x2
x1 =x2

没有实数根
xx2
x ≠ 的一切实数
所有实数
x1无解
无解
课堂总结

展开更多......

收起↑

资源预览