广西河池市宜州区2024-2025学年七年级下学期6月期末数学试题(图片版,含答案)

资源下载
  1. 二一教育资源

广西河池市宜州区2024-2025学年七年级下学期6月期末数学试题(图片版,含答案)

资源简介

23.
(12分)
(1)【问题】
如图1,若AB∥CD,∠BEP=25°,∠PFC=150°.求∠EPF的度数:
(2)【问题迁移】
如图2,AB∥CD,点P在AB的上方,问∠PEA,∠PFC,∠EPF之间有何数
量关系?请说明理由;
(3)【联想拓展】
如图3所示,在(2)的条件下,已知∠EPF=a,∠PEA的平分线和∠PFC
的平分线交于点G,用含有a的式子表示∠G的度数.
C-
图1
图3
2025年春季学期期末考试试题卷七年级数学
第6页共6页
2025年春季学期期末考试试题卷
七年级(下)数学
注意:1.本试题卷满分120分,考试时间120分钟。
2.考生必须在答题卡上作答,在本试题卷上作答无效。
一、选择题:(每小题中只有一个选项符合要求,每小题3分,共36分。)
1.4的算术平方根是()
A.-2
B.4
C.±2
D.2
2.现实世界中,平移现象无处不在,中国的方块字中有些也具有平移现象,下
列汉字中可以看成是由平移构成的是(




A
B
C
D
3.如图,若a∥b,∠1=60°,则∠2的度数为(
A.40°
B.60°
C.120°
D.150
4.为了了解某中学学生的视力情况,需要抽取部分学生进行调查.下列抽取学生
的方法最合适的是(
)
A.随机抽取该校一个班级的学生
B.随机抽取该校一个年级的学生
C.随机抽取该校一部分男生
D.分别从该校七、八、九年级中各随机抽取10%的学生
5.点A(一3,一2)到y轴的距离为(
A.3个单位长度
B.一2个单位长度
C.2个单位长度
D.-3个单位长度
6.如图,直线AC、DC、BE相交于点C,连接AB,能判定AB∥CD的条件是(
)
A.∠A=∠ACB
B.∠B∠ACD
C.∠B+∠DCE180°
D.∠作∠ACD
7.估计√1-2的值在下列哪两个整数之间(
)
A.3和4之间
B.2和3之间
C.1和2之间
D.0和1之间
2025年春季学期期末考试试题卷七年级数学
第1页共6页
书法
大合明
20%

绘画
15%
25%
第3题
第6题
第8题图
8.为迎接党的二十大胜利召开,某校开展了“学党史,悟初心”系列活动.学
校对学生参加各项活动的人数进行了调查,并将数据绘制成如下统计图.
若参加“书法”的人数为80人,则参加“大合唱”的人数为(
A.60人
B.100人
C.160人
D.400人
9.不等式组中的两个不等式的解集如图所示,则这个不等式组的解集是()
A.0B.x≤2
C.0≤x<2
D.x>0
10.小龙和小刚两人玩“打弹珠”游戏,小龙对小刚说:“把你珠子的一半给我,
我就有10颗珠子”,小刚却说:“只要把你的给我,我就有10颗”,如
果设小刚的弹珠数为x颗,小龙的弹珠数为y颗,则列出方程组正确的是()
x+2y=10
x+2y=10
x+2y=20
x+2y=20
A
C
3x+y=30
3x+y=10
3x+y=10
3x+y=30
11.如果不等式组X≤8无解,那么m的取值范围是(
x m
A.m>8
B.m≥8
C.m<8
D.m≤8
12.定义:平面内的直线1,与2相交于点O,对于该平面内任意一点M,点M
到直线l,,l2的距离分别为a,b,则称有序非负实数对(a,b)是点M的
“距离坐标”.根据上述定义,距离坐标为(2,3)的点的个数是()
A.2
B.3
C.4
D.5
二、填空题(每小题3分,共12分,请将答案填在答题卡上对应的区域内)
2025年春季学期期末考试试题卷七年级数学
第2页共6页2025 年春季学期期末考试七年级数学参考答案
一、 选择题
题号 1 2 3 4 5 6 7 8 9 10 11 12
答案 D B C D A D C C C D B C
二、 填空题
13. -125 14. 2x=﹣3 15. 9 16. 七三、解答题
17.(1)解: x 2y 1 ①,
3x 2y 11 ②
①+②,得 4x=12,·····································································1 解得:x
=3.·············································································2分
将 x=3代入②,得 9﹣2y=11,
解得 y=﹣1.············································································3分
x 3
所以方程组的解是 y 1 .························································4分
(2)解:由 (1) 得:x 1····················································5分
由(2) 得:x<3·································6 分
所以不等式组的解集为:x 1··································8分
18.解:(1)如图,三角形 A1B1C1即为所求;············· 3分
(2) A1的坐标是(-1,3),B1的坐标是(-2,0),C1的坐
标是(1,2);·····················································6分
故答案为:(-1,3),(-2,0),(1,2);
(3) 三角形 A1B1C1的面积为:3 3 3 2 3 1 1 2 .·····10分
19.解:(1)15 10% 150 人,150 15 45 30 60 人,
答:这次被调查的学生有 150人,被调查的学生中,用手机学习的有 60人;...4分
(2)两个统计图补充完整如图所示: 40%;····························6分
(3)360 144 ,答:在扇形统计图中,用手机学习部分所对应的圆心角的
度数是 144 ;·8分
(4)1200 480 人,答:全校 1200 名同学中用手机学习的学生人数大约为 480
人.············10 分
20.解:(1) CD AB,
CDB CDA 90 ,···························································· 1分
BCD 20 ,
ABC 90 20 70 ,···························································2分
又 BP 平分 ABC,
PBC PBD ABC 35 ,···············································4 分
(2) CD AB,
CDB CDA 90 ,
BCD α,
ABC 90 α,···································································· 6分
又 BP 平分 ABC,
PBC PBD ABC 90 α ,······································8 分
BPD PBC PCB 90 α α 45 α 10 分
21.解:(1)设改扩建 1所中学需要 x 万元,改扩建 1所小学需要 y 万元,..1分
3x 2y 6200
依题意,得: x 3y 4400 ,····················································· 3分
x 1400
解得: y 1000.······································································4分
答:改扩建 1所中学需要 1400万元,改扩建 1所小学需要 1000 万元.·5分
m
(2)设改扩建 m所中学,则改扩建 10 所小学,·························6分
500m 300 10 m 4000
依题意,得: 1400m 1000 10 m 8400 4000,··························· 8分
解得:5 m 6.
m 为整数,
m 5 或 m 6,······································································· 9分
共有 2中改扩建方案:一:改扩建中学 5 所、小学 5所;二:改扩建中学 6所、小学 4
所.10 分
22.解:(1)∵x-y=3,∴x=y+3,
∵x>2,∴y+3>2,
∴y>-1,又∵y<1,
∴-1<y<1…①,·······································································2分
同理可得 2<x<4…②,
由①+②得:-1+2<x+y<1+4,
∴x+y 的取值范围是 1<x+y<5,···················································4分
3x y 2a 5 x a 1
(2) 解方程组 x 2y 3a 3 y a 2,得 ,·····································5分
∵该方程组的解都是正数,
a 1 0
∴x>0,y>0,∴ a 2 0,························································ 6分
解不等式组得:a>1,
∴a的取值范围为:a>1;··························································· 8分
(3) 解:∵a-b=4,b<2,∴b a 4 2,
∴a 6,由(2)得,a>1,
∴1 a 6,
∴2 2a 12…①,······································································ 10分
又∵a b 4,∴b a 4, ∵1 4 a 4 6 4,
∴ 3 b 2,
∴ 9 3b 6…②,······································································ 11分
由①+②得:2 9 2a 3b 12 6,
∴2a+3b的取值范围是 7 2a 3b 18·············································12分
23.解:(1)如图 1,过点 P作 PQ∥AB,·········································1分
∵PQ∥AB,AB∥CD,
∴CD∥PQ.
∴∠CFP+∠FPQ=180°
∴∠FPQ=180°﹣150°=30°,······················2分
又∵PQ∥AB,
∴∠BEP=∠EPQ=25°,3分
∴∠EPF=∠EPQ+∠FPQ=25°+30°=55°;·······4分
(2)∠PFC=∠PEA+∠P,
理由:如图 2,过 P点作 PN∥AB,则 PN∥CD,···· 5分
∴∠PEA=∠NPE,
∵∠FPN=∠NPE+∠FPE,
∴∠FPN=∠PEA+∠FPE,·································6分
∵PN∥CD,
∴∠FPN=∠PFC,··········································7分
∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P;··8分
(3)如图 3,过点 G 作 AB的平行线 GH.
∵GH∥AB,AB∥CD,
∴GH∥AB∥CD,·············································9分
∴∠HGE=∠AEG,∠HGF=∠CFG,又∵∠PEA 的平分线和
∠PFC 的平分线交于点 G,
∴∠HGE=∠AEG= ∠AEP,∠HGF=∠CFG= ∠CFP,························10分同
(2)易得,∠CFP=∠P+∠AEP,
∴∠HGF= (∠P+∠AEP)= (α+∠AEP),
∴∠EGF=∠HGF﹣∠HGE= (α+∠AEP)﹣∠HGE= α+ ∠AEP﹣∠HGE= α...12 分

展开更多......

收起↑

资源列表