资源简介 2025年春季学期八年级期末检测数学试卷参考答案一、选择题题号12345689101112答案cABCCBBAAD二、填空题13.x2-314.515.75%16号三、解答题17.(1)(√3-1)(N3+1)-√18区-s-得=3-1-3W23分=26--62.7分=2-3W2.4分6②8分18.(1x2-4x+1=0(2)x2-5x+6=0求根公式x=3-4a2a1分(x-2)(x-3)=08分54=2-53分61=2x2=310分2=4+=2+55分219解:(1)元,=12.6+12+123+1.7+129=1232分5元,-123+123+123+14+132-1235…2分甲乙两个品种平均每公顷的产量一样高5分(2)-26-122+02-12+02312+017-123°+029-1231018…7分g2=h23-1232+023-12°+023-1232+014-1232+032-123]-03249分52<522甲品种的产量较稳定性好10分19.AE与BF互相垂直.1分理由:因为四边形ABCD是正方形所以AB=BC,∠ABE=∠BCF=90°,在△MBE和△BCF中,AB=BC∠ABE=∠BCFBE=CF所以△ABE三△BCF(SAS)5分所以∠BAE=∠CBF6分而∠BAE+∠GEB=90°7分∠CBF+∠GEB=90°8分即∠EBG+∠GEB=90°9分所以∠BGE=90°10分即AE与BF互相垂直.21.(1)因为△=(-2)2+4m=1m2+2m+4=(m+2)2≥04分所以这个方程程总有两个的实数根5分(2)由二次方程根与系数的关系得:x+x2=m-2,x1·x2=m…7分1+1=当+x=m-2=1x1X2X1·x29分解得m=4.10分22.(1)证明:DE⊥BC,∴.∠DFB=90°,,∠ACB=90°,B∴,∠ACB=∠DFB,AC∥DE,,'N∥AB,即CE∥AD,∴.四边形ADEC是平行四边形,∴,CE=AD:4分(2)证明:,D为AB中点,..AD=BD,.CE=AD,∴,BD=CE,,BD∥CE,∴四边形BECD是平行四边形,,∠ACB=90°,D为AB中点,∴,CD=BD,∴.四边形BECD是菱形:8分(3)解:当∠A=45°时,四边形BECD是正方形,理由如下:,∠ACB=90°,.∠ABC=45°,由(2)可知,四边形BECD是菱形,∴.∠ABC=∠CBE=45°,∠DBE=90°,∴.四边形BECD是正方形.12分23.(1)证明:过O点作E垂直BC,E与BC、AD分别交于E、F点设AF=BE=x,OF=y,OE=t,FD=CE=1分在直角三角形AOF中,OA2=AF2+OF2=x2+y2在直角三角形0C中,OC2=CE2+OE2=2+t2分所以OA2+OC2=x2+y2+z2+t23分在直角三角形BOE中,OB2=BE2+OE2=x2十t在直角三角形D0F中,OD2=DF2+OF2=z2+y2…4分0B2+OD2=x2+y2+z2+t25分即OA2+OC2=OB2+OD2得证6分宁明县 2025 年春季学期八年级期末检测试题数 学(考试时间: 120 分钟 ;满分: 120 分)注意事项:1.请在答题卡上作答,在本试卷上作答无效;2.不能使用计算器,考试结束时,将答题卡交回.一、选择题 (本大题共 12 小题,每小题 3 分,共 36 分)1.今年五一节,崇左至南宁高速交警对限速 120km/h 的某路段监测到 6 辆车的车速(单位:km/h)分别为 118, 106, 105, 120, 118, 112, 则这组数据的众数为( ).A.115 B.116 C.118 D.1202. 若方程 的两根为 x 、x , 则 x ·x 的值为:( )A. - 2 B. 2 C.3. 矩形、菱形、正方形都具有的性质是 ( )A.对角线相等 B.对角线互相平分 C.对角线互相垂直 D.对角线平分对角4.若一个平面多边形的内角和为 1080°,则它是一个平面 边形.A. 六 B. 七 C. 八 D. 九5.若△ABC 的三边长 a, b, c 满足( 则下列对△ABC 的形状描述最确切的是()A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.等腰三角形或直角三角形6. 如图,在△ABC 中, D,E,F 分别是 BC,AC,AB 的中点,若 AB=6,BC=8,则四边形 BDEF 的周长为()A.28 B.14 C.10 D.77.如图,边长为 6 的大正方形中有两个小正方形,若两个小正方形的面积分别为 S 、S , 则. 的值为() A.16 B.17 C.18 D.198. 如图, 菱形 ABCD 中, ∠BAD=120°,AC=4,则这个菱形的面积为( )B. 16 C. 89.近年来,电动汽车快速发展.某汽车制造商设计生产一款新型纯电动汽车,现测试该款电动汽车低速工况和高速工况的能耗情况,为了更接近真实的日常用车环境,低速工况的平均时速在 30km/h 左右,包括城市一般道路等路况;高速工况的平均时速保持在 90km/h 左右,路况主要是高速公路.设低速工况时能耗的平均数为 x ,方差为 s ,高速工况时能耗的平均数为 x ,方差为 s ,根据统计图中的数据,可得出正确结论是( )10.若正比例函数 y=kx 的图象过第二、四象限,则关于 x 的一元二次方程 的根的情况是( )A.有两个不相等的实数根 B.没有实数根 C.有两个相等的实数根 D.不能确定11.下列说法正确的是 ()A.对角线相等且垂直的四边形是正方形B.对角线相等且互相平分的四边形是菱形C.一组对边平行另一组对边相等的四边形是平行四边形D.对角线相等的平行四边形是矩形12 如图,将矩形纸片 ABCD 按如图所示的方式折叠,AE,EF 为折痕, =30°.折叠后,点 B 落在 EC 边上的 B 处,点 C 落在 AD 边上的 C 处.则 BC=( )A. B. 2 C. 3二、填空题(本大题共 4 小题,每小题 3 分,共 12 分)13.若式子 在实数范围内有意义,则 x 的取值范围是 .14.在三角形 ABC 中, ∠ACB=90°,AC=6,BC=8,D 为 AB 的中点, 则 CD 的长度 为 .15.某校从参加计算机测试的学生中抽取了 60 名学生的成绩进行分析,并将其分成了六段后绘制成如图所示的频数分布直方图(其中70~80 分数段因故看不清).若 60 分以上(含 60 分)为及格,试根据图中信息来估计这次测试的及格率为 。16. Rt△ ABC 中 ,∠ BAC=90°,AB =3,AC=4,P 为边 BC 上一动点, PE⊥AB 于 E, PF⊥AC 于 F, M 为 EF 中点, 则 AM 的最小值为 .三、解答题(本大题共 7 小题。共 72 分。解答应写出文字说明,证明过程或演算步骤)17.(8 分)计算:18.(10 分) 解方程:19 (10 分)为比较甲、乙两个新品种水稻的产品质量,收割时各抽取了五块具有相同条件的试验田地,分别称得它们的质量,得其每公顷产量如下表(单位: t):编号品种 1 2 3 4 5甲 12.6 12 12.3 11.7 12.9乙 12.3 12.3 12.3 11.4 13.2(1)哪个品种平均每公顷的产量较高 (2)哪个品种的产量较稳定 注:一组数据是. ,它们的平均数数是方差20.(10 分)如图,在正方形 ABCD 中,点 E,F 是边 BC,CD 上的点,且 那么,线段 AE与 BF 是 否 互 相 垂 直 请 说 明 理 由 .21.(10 分)关于 x 的一元二次方程(1)求证:不论 m 为何值,这个方程总有两个不等的实数根。(2)若这个方程的两个实数根为 x 、x 。且满足 求 m 的值22. (12 分)如图,在 Rt△ABC 中, ∠ACB=90°, 过点 C 的直线 MN∥AB, D 为 AB 边上的一点,过点 D 作 DE⊥BC, 垂足为 F, 交直线 MN 于 E, 连接 CD, BE.(1) 求证: CE=AD (2)当 D 为 AB 中点时,证明:四边形 BECD 是菱形;(3)在满足 (2)的条件下,当△ABC 满足什么条件时,四边形 BECD 是正方形 直接写出你的答案。23.(12 分)如图 1,已知点 O 是矩形 ABCD 的 AD 边上一点, 求证:分析求证:观察求证目标,为二次型等式,结构与勾股定理类似,考虑构造直角三角形利用勾股定理进行求证。证明:过 O 点作 OE 垂直 BC, 垂 足 为 E, 设 OA=BE=x,OE=y, OD=EC=z 在 直 角 三 角 形 BEO 中 ,在 直 角 三 角 形 OCD 中 ,所以即 得证请您模仿以上方法完成以下问题;(1)如 图 2, 已 知 点 O 是 矩 形 ABCD 内 任 意 一 点 , 求 证 :(2)如图 3,已知点 O 在矩形 ABCD 的外部,结论 还能成立吗 请给予证明. 展开更多...... 收起↑ 资源列表 数学 2025年春季学期八年级期末检测数学试卷 参考答案(1).pdf 数学 还原Word_数学(2).docx