《暑假必刷题》高二数学北师大版(2019)暑假作业(三) 二项式定理(pdf版,含答案)

资源下载
  1. 二一教育资源

《暑假必刷题》高二数学北师大版(2019)暑假作业(三) 二项式定理(pdf版,含答案)

资源简介

过好假期每一天
参芳答案
0,1,2,3中的一个数,即3×4=12个:
假期作业(一)
计数原理
②十住致是3,则百位数可以是1,2中的一个致,个位致可以是0,
1,2中的一个数,即2×3=6个:
知识回顾
③十位致是2,则百位数只能是1,个位数可以是0,1中的一个数,
1.1十开
即2个;
2.m×n
综上,符合条件的共有12十6十2=20个
厚积薄发
故答紫为:20.
一,选择题
答案:20
1.B在3,4,5中取一个致作分子有3种不同的取法,6,8,10中的任
9.解析:由题意,从1,3,5,7,9中任取两个数,从2,4,6,8中任取两
意一个数作分母有3种不同的数法,所以可以得到3×3=9个分
个数,
5
数,共中子,冬=。会,相同,所以可得到9一2=7个不同的
组成CCA=10×6×24=1440个没有重复致字且不含有数字0
的四位致,
分数
当0在末位时,共有CCA=10×4×6=240个四位偶数,
故选:B
当末住为2,4,6,8(且0不在首位),
2.D比2000大,故千位为2,3,4,
共有4C号CA一4A号=880个四位偶数
若千位为2,则个位为4,有2×1=2(个)符合题意的四位致:
刚可以组成240十880=1120个没有重复数字的国位偶数,
若千位为3,则个位为2或4,有2×2×1=4(个)符合题意的四
故答紫为:1440:1120.
位数:
答案:14401120
若千位为4,则个位为2,有2×1=2(个》符合题意的四位致
三、解答题
被据分类加法计数原理得,一共有2十4十2=8(个)符合题意的四
10.解:(1)分三类:
位数.
选出的是高二(1)班的学生,有7种选法
故选:D
选出的是高二(2)班的学生,有9种选法:
3.D由题意知每位可学都有3种迭择,可分4步完成,每步由一位
选出的是高二(3)班的学生,有10种选法,
同学迭择,故共有3×3×3×3=3种选择方法.
由分类加法计数原理,得不网的选法种数为7十9十10=26.
故选:D,
(2)每延选一名副组长为一步,所以共有三步
4.D第一天可以排5个人中的任意一个,有5种排法;
由分步乘法计数原理,得不可的选法种数为7×9×10=630.
第二天可以排另外4个人中任意一个,有4种排法;
(3)分三类:高二(1)班和高二〔2)班,
第三天同上,有4种掩法;
高二(1)班和高二(3)班.
第四天同上,有4种排法:
高二(2)班和高二(3)班.
第五天同上,有4种排法
每类又分两步,故不同的选法种数为7×9+7×10十9×10=223
根据分步桑法计数原理得所有的排法总数为5X4X4X4X4
11,解:(1)从0型血的人中选1人有28种不同的选法,从4型血中
1280
选1人有了种不网的选法,
故选:D.
从B型血的人中速1人有9种不同的选法,从AB型血的人中选
5C第一步:先让妈妈和女儿就座,第一行选一个住置,第二行有
1人有3种不同的选法
4个位置可选择,故妈妈和女儿的就座方法数为5×4×2=40,
任远1人去献血,即无论选哪种血型的哪一个人,
第二步:让爸爸和儿子就座,不粉设妈妈和女儿分别选A,H,
这件“任选1人去献血”的事情都可以完成,
则爸爸和儿子有BF,BI,BJ,CF,CG,CI,CI,DF,DG,D,EF,
所以用分类计数原理.有28十7十9十3=47种不同选法】
EG.EI.
(2)要从四种血型的人中各选1人,即要在每种血型的人中依次
共13种选择,爸爸和儿子的顺序可换·故爸爸和儿子的就座方法
选出】人后
数为2×13=26;
这种“各选1人去献血”的事情才完成,
根据分步桑法计数原理,共有40×26=1040(种)
所以用分步计致原理,有28×7×9×3=522种不同迭法.
故选:C.
(3)这些人中有2人去献血,他们的血型不同的概率是:
6.ABD对于A,由于区拔A与B,C均相邻,所以至少需要三种及
以上的颜色才能保证相邻区战不同色,故A正确,
28×(7+9+3)+7×(9+3)+9X3×2
47×46
对于B,当=4时,此时按照ABC的顺序涂,每一个区域需要一个
643
颜色,此时有4×3×2=24种涂法,
1081
涂D时,由于B,D同色(D只有一种颜色可选),所以只需要从利
下的颜色或着与A同色的两种颜色中选择一种涂E,
假期作业(二)
排列与组合
救共有24×2=48种涂法,B正确;
对于C,当n=4时.涂ABC有4×3×2=24种,
知识回顾
当B,D不同色(D只有一种颜色可选),比时ABCD四块区城所用
1.一定的顺序
颜色各不相问·涂E只能用与A问色·此时共有24种涂法,C
2.所有不同排列的个数
错误:
n!
对于D,当=5时,此时按照ABC的顺序涂,每一个区战需要一
3.1)nn-1D(n-2)…(n一m十1Dm"m(2)全部1
个颜色,此时有5×4X3=60种涂法,
4.(1)作为一组(2)所有不同组合的个数C
涂D时,当B,D可色(D只有一种颜色可选),所以只需要从刺下
的两种颜色中或者与A同色的颜色中选择一种涂E,
5.(0-1D(n-2)…(n-m+11

故共有60×3=180种涂法,
6.C-m
当B,D不同色,此时ABCD四块区城所用颜色各不相可,共有5X
4×3×2=120,
厚积薄发
只需要从剩下的源色或者与A同色的两种族色中选择一种涂E此
、选择题
1.B1!=1,21=2,3!=6,4!=24,从5!开始一直到100!的
时共有5×4×3×2×2=240种涂法·
综上可知,总的涂色方法有420种,故D正确
个位数字都是0,
故读:ABD
所以要求S的个位数字,别其实只要将前面四个致加起来
即1+2+6+24=33.
二,填空题
7.解析:依题意a有5种不同的取法,b也有5种不同的取法
所以S的个位数字就是3.
故选:B.
所以方程
y
=1表示的不同双曲线共有5×5=25.
2.B使用4种颜色给四个区域涂色,有A=24种涂法:
故答案为:25
使用3种源色给四个区域涂色,共有2CCA号=48种涂法:
答案:25
(使用3种颜色给四个区城涂色有两类情况:①区城A与区城C涂
同一种颜色,区城B与区城D涂另外2种颜色;
8.解析:集合A=《0,1,2,3,4},且a,b,r∈A
则这个三位数满足“十住上的致字比其它两个数位上的数字都大
②区城B与区城D涂同一种源色,区城A与区城C涂另外2种颜
色含以下三种情况:
色)
①十位数是4,则百位数可以是1,2,3中的一个数,个住数可以是
使用2种颜色给国个区域涂色,共有A=12种不同的涂法
31假期作业
过好假期每一天
假期作业(三》
二项式定理
知识回顾
》固基础
要厚积薄发
》勤演练
1.二项式定理
一、选择题
(a+b)"=
(n∈N*).
1.在(x一1)(x一2)(x一3)(x一4)的展开式中,x的系
上式可简写成:(a十b)”=∑Ca一6
数为
()
A.-50
B.-35
等号右边的多项式叫做(a十b)”的二项展开式,展
C.-24
D.-10
开式中一共有

2.化简多项式(2x+1)5-5(2.x十1)4+10(2x十1)3一
二项式系数:各项的系数C(是∈{0,1,2,…,})叫
10(2x十1)2+5(2x+1)-1的结果是
(
做二项式系数
A.(2x+2)5
B.2x5
2.(a十b)”展开式的第
项叫做二项展开式的
C.(2x-1)5
D.32x
通项,记作T+1=
典例精析拓思维
3.若(1+)1十x)“的展开式中含x项的系数为
10,则n的值是
(
【典例】已知二项式(:-会)广(a∈R.n∈N)
A.3
B.4
C.5
D.6
的展开式中,第7项为常数项,且各项系数之和等于其
:4.已知(x-1)(x+2)5=a0+a1x+a2x2+…十a x7,
二项式系数之和.
则ao十a1十a3十as十a的值为
(
(1)求a与n的值:
A.-66
B.-65
(2)求其展开式中所有的有理项。
C.-63
D.-62
【解】山)在三项式(:会)广的展开式中,第7
2
5.已知(x一
的展开式中所有项的二项式系数之
项为=c)()=(-a)C2-.
2
和为32,则(x
的展开式中x的系数为
由题意可知,n一7=0,所以n=7.
因为各项系数之和等于其二项式系致之和,所以
A.-80
B.-10
令x=1得(1-a)7=2,解得a=-1.
C.10
D.80
(2)二项式(+后》
6.(多选题)已知二项式(3x十√)"的展开式中共有7
的展开式的通项为T+1=
项,则下列说法正确的有
()
C9x2(7-)
=Cx,k=0,1,2,…,7,
A.n为7
B.所有项的二项式系数和为32
令42,7张?Z,解符k=0,3,6,
C.二项式系数最大的项为第4项
3
D.没有常数项
所以其展开式中所有的有理项为T=C号x4=x14,
二、填空题
T4=Cx7=35x2,T7=C9x0=7.
7.(a十x)(1一x)224展开式中x224的系数为
【名师点睛】求二项展开式的特定项的常用方法
-2023,则a的值为
(1)对于常数项,隐含条件是字母的指数为0(即0:
8.在(1+x)2+(1+x)3+(1+x)4+…+(1+x)20的
次项)
展开式中,含x的项的系数为
(用数字表示).
(2)对于有理项,一般是先写出通项公式,求其所
有的字母的指数恰好都是整数的项,解这类问题必须
9.已知(-2y)(mx-)5的展开式中y的系数为
合并通项公式中同一字母的指数,根据具体要求,令其
80,则m的值为
属于整数集,再根据数的整除性来求解
三、解答题
(3)对于二项展开式中的整式项,其通项公式中同一
10.设(1+a.x)7=ao+a1x+a2x2+…+a7x7,n∈N,
字母的指数应是非负整数,求解方式与求有理项一致
已知a3=-280.

展开更多......

收起↑

资源列表