广东省阳江市2024一2025学年度第二学期期末八年级数学质量监测试卷(PDF版,含答案)

资源下载
  1. 二一教育资源

广东省阳江市2024一2025学年度第二学期期末八年级数学质量监测试卷(PDF版,含答案)

资源简介

机密★启用前
2024一2025学年度第二学期期末质量监测试卷
八年级数学
本试卷共4页,23小题,满分120分。考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的学校、姓名和准考证号填写在答题卡上。
将条形码粘贴在答题卡“条形码粘贴处”
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;
如需改动,用橡皮擦干净后,再选涂其他答案。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位
置上:如需改动,先划掉原来的答案,然后再写上新的答案:不准使用铅笔和涂改液。不按以
上要求作答的答案无效。
4.考生必须保持答题卡的整洁。考试结束后,将试卷和答题卡一并交回。
一、选择题:本大题共10小题,每小题3分,共30分.在每小题列出的四个选项中,只有一项是
符合题目要求的,
1.下列二次根式中,是最简二次根式的是()
A.3
B.V⑧
C.阿
2.下列各组数中,能构成直角三角形三边长的是()
A.4,5,6
B.5,8,13
C.1,V5,4
D.1,1,2
3.下列计算正确的是()
A.V2+V5=V5
B.3V2-23=1
C.,/(-2)2=-2
D.V⑧÷2=2
4.若点A(1,a)在一次函数y=2x一1图象上,则a的值是()
A.1
B.3
C.-1
D月
5.随着互联网的发展,网络购物越来越普及。某电商平台对某款热门电子产品一周内的日销售量
(单位:台)进行了统计,数据如下:25,30,28,32,30,26,30。关于这组数据,下列说法
正确的是()
A.中位数是28
B.众数是32
C.中位数是30
D.众数是26
6.下列命题中,是真命题的是()
A.有两边相等的平行四边形是菱形
B.有一个角是直角的四边形是矩形
C.四个角相等的菱形是正方形
D.两条对角线互相垂直的平行四边形是正方形
7.正比例函数y=a(k≠0)的函数值y随x的增大而减小,则一次函数y=:一k的图象大致是
石:女
8.如题8图,两个较大的正方形的面积分别为225和289,则字母A所代表的正方形的面积为
()
A.64
B.16
C.8
D.4
八年级数学试卷第1页(共4页)
7.如题7图所示,在图形B到图形A的变化过程中,下列描述正确的是()
A.向上平移2个单位,向左平移4个单位
B.向上平移1个单位,向左平移4个单位
C.向上平移2个单位,向左平移5个单位
D.向上平移1个单位,向左平移5个单位
B
oo
题7图
题9图
题10图
3x-1≥8
8.若关于x的不等式组
的整数解共有三个,则a的取值范围是()
xA.-3B.2≤a<3
C.-3D.59.如题9图所示,下列推理正确的个数有()
①若∠1=∠2,则AB/1CD:②若AD/BC,则∠3+∠A=180°:
③若∠C+∠CDA=180°,则AD//BC:④若AB//CD,则∠3=∠4.
A.0个
B.1个
C.2个
D.3个
10.用大小完全相同的长方形纸片在直角坐标系中摆成如题10图所示图案,已知A(一1,5),则
点B的坐标是()
A.(-6,4)
B.(-9,)
C.(-6,5)
D(-4,)
二、填空题:本大题共5小题,每小题3分,共15分.请将下列各题的正确答案填写在答题卡相
应的位置上
1l.若n<512.某市为了解970万市民的出行情况,科学规划轨道交通,400名调查者走入1万户家庭发放了
调查问卷,并对收回的3万份问卷进行了调查登记.该调查中的样本容量是
13.一个数的两个平方根分别是2a一1与一a+2,则这个数是
14.已知x=m是二元一次方程组x-2y=3
的解,则代数式m十6n的值为
y=n
2x+4y=5
15.如题15图,将直角三角形ABC沿BF方向平移得到直角三角形DEF,
A
已知BE=4,AG=3,AC=7,则图中阴影部分的面积为
三、解答题(一):本大题共3小题,每小题7分,共21分,
G
16.解方程组:
3x+2y=10
B
E
4(x-1)≥3x-7
题15图
17.解不等式组:
3x<
,并求出不等式组的所有整数解的和
A
18.如题18图,在四边形ABCD中,点E是BC延长线的一点,
连接AE交CD于点F,若∠B=∠D,∠1+∠2=180°.
题18图
(1)证明:AB//CD.
(2)若∠E=30°,∠BAD=120°,求∠2的度数,
B
七年级数学试卷第2页(共4页)2024—2025 学年度第二学期期末质量监测试卷
八年级数学参考答案及评分标准
一、选择题:本大题共 10小题,每小题 3分,共 30分.
1.A 2.D 3.D 4.A 5.C 6.C 7.A 8.A 9.B 10.C
二、填空题:本大题共 5小题,每小题 3分,共 15分.
11.x≥-1 12.乙 13. 13 14.y=2x+4 15.8或 4+2 3
三、解答题(一):本大题共 3小题,每小题 7分,共 21分.
16.(7分)
1
解: 24÷ 3- 2× 18+ 32
= 8- 9+ 32························································································· 3分
=2 2-3+4 2··························································································6分
=6 2-3··································································································7分
17.(7分)
(1)解:∵y与 x-1成正比例,
∴设 y=k(x-1)(k≠0),·······································································1分
∵当 x=-1时,y=4,
∴4=k(-1-1),················································································ 2分
解得:k=-2,··················································································· 3分
∴y=-2(x-1),················································································ 4分
即 y与 x的函数关系式为:y=-2x+2;·················································· 5分
(2)解:将 x=3代入 y=-2x+2,得 y=-2×3+2=-4≠2,·························· 6分
∴点(3,2)不在这个函数得图象上.·····················································7分
18.(7分)
解:我认为小明的说法正确.理由如下:························································1分
∵HE⊥CD,AB⊥CD
∴∠HEC=∠AKC=90°··············································································· 2分
∴AB//GF·································································································3分
∵∠HGA=∠HFB
∴AG//BF·································································································4分
∴四边形 AGFB是平行四边形·······································································5分
∴GF=AB=1m··························································································6分
∴GF的长度就是篮板 AB的高度.································································7分
八年级数学参考答案及评分标准 第 1 页 (共 5 页)
四、解答题(二):本大题共 3小题,每小题 9分,共 27分.
19.(9分)
(1)45% 60········································································· 2分(每空 1分)
(2)解:平均睡眠时间为 8小时的人数为:60×30%=18人;···························· 4分
补全频数分布直方图,如下图:
(3)解:根据题意得:平均睡眠时间为 7小时的人数所占的百分比最大,
∴这部分学生的平均睡眠时间的众数是 7,··············································· 5分
平均数=6×20%+7×45%+8×30%+9×5%=7.2小时;··························· 7分
12+27
(4)解:1200名学生中睡眠不足(少于 8小时)的学生数= 60 ×1200=780人.9分
20.(9分)
(1)解:由题意可知 MN⊥AB,
在 Rt△MNB中,BN= BM2-MN2= 1502-1202=90(m),························2分
∴AN=AB-BN=250-90=160(m),······················································ 3分
在 Rt△AMN中,AM= AN2+MN2= 1602+1202=200(m),······················ 5分
∴供水点 M到喷泉 A需要铺设的管道长为 200m;······································6分
(2)证明:∵AB=250m,AM=200m,BM=150m,
∴AB2=BM2+AM2,·············································································8分
∴△AMB是直角三角形,
∴∠AMB=90°.··················································································9分
21.(9分)
(1)证明:∵四边形 ABCD是平行四边形
∴AD// BC
∴∠AFB=∠EBF,∠FAE=∠BEA·························································· 1分
∵O为 BF的中点
∴BO=FO·························································································· 2分
在△AOF和△EOB中
八年级数学参考答案及评分标准 第 2 页 (共 5 页)
∠EAF=∠AEB
∠AFB=∠EBF
OB=OF
∴△AOF≌△EOB(AAS)
∴BE=FA··························································································· 3分
∴四边形 ABEF是平行四边形································································· 4分
又∵AB=AF
∴四边形 ABEF是菱形;······································································· 5分
(2)解:∵四边形 ABCD是平行四边形
∴AD=BC
∵AF=BE
∴DF=CE=2······················································································6分
∵平行四边形 ABCD的周长为 24
∴菱形 ABEF的周长为:24-4=20
∴AB=5····························································································· 7分
∵∠BAD=120°
1
∴∠BAE= 2∠BAD=60°······································································· 8分
又 AB=BE
∴△ABE是等边三角形
∴AE=AB=5.··················································································· 9分
五、解答题(三):本大题共 2小题,第 22题 13分,第 23题 14分,共 27分.
22.(13分)
(1)解:∵20人先下单,三种团购优惠方案的条件均不满足,
∴设这 20人中选择 A套餐的有 x人,x<20,则选则 B套餐的有(20-x)人,20-x<12,
∴30x+25(20-x)=565,······································································1分
∴x=13,···························································································2分
∴20-x=7························································································· 3分
答:选择 A套餐的有 13人,选择 B套餐的有 7人;
(2)解:∵两种套餐皆可的 11人中有 m人选择 A套餐,
∴当全班选择 A套餐人数不少于 20人时,即 13+m≥20,
∴m≥7,··························································································· 4分
则选择 B套餐人数为 7+(11-m)≤11,不满足优惠方案二的条件,
∴订餐总费用为:w=30×0.9×(13+m)+25×(7+11-m)=2m+801;········ 6分
(3)解:∵两种套餐皆可的 11人中有 m人选择 A套餐,
八年级数学参考答案及评分标准 第 3 页 (共 5 页)
①当 m≥7时,由(2)可知,订餐总费用为 w=2m+801,
∵k=2>0,
∴w随着 m的增大而增大,
∴当 m=7时,订餐总费用最小为 w=2×7+801=815(元);······················8分
②当 0≤m<7时,13+m<20,18-m>11,
∴订餐总费用为 w=30×(13+m)+25×0.8×(7+11-m)=10m+750;
∵k=10>0,
∴w随着 m的增大而增大,
∴当 m=0时,订餐总费用最小为 w=750(元);····································· 10分
③若选择优惠方案三,订餐总费用为 w=30×(13+m)+25×(7+11-m)=5m+840;
∵总费用满 850元立减 110元,
∴当 m=2时,订餐总费用最小为 5×2+840-110=740(元);··················12分
综上所述,当订购 A套餐 15 份,订购 B套餐为 16 份时,订餐总费用最低为 740 元.
·······································································································13分
23.(14分)
(1)解:∵一次函数 y=ax+b(a≠0)的图象经过点 A(-2,0),点 B(2,4)
-2a+b=0
∴ ,················································································ 1分
2a+b=4
a=1
解得 ,························································································2分
b=2
∴一次函数的解析式为 y=x+2;····························································3分
(2)解:如图,作点 C关于 x轴的对称点 C′,连接 BC′交 x轴于 M,此时 MB+MC的值最小.
········································································································ 4分
对于 y=x+2,
令 x=0,则 y=2,
∴C(0,2)
∴C′(0,-2)······················································································ 5分
设直线 BC′的解析式为 y=kx-2(k≠0),
则 2k-2=4,解得:k=3
八年级数学参考答案及评分标准 第 4 页 (共 5 页)
∴直线 BC′的解析式为 y=3x-2,··························································· 6分
令 y=0 2,得 x= 3
M 2∴ 3,0 ·························································································7分
(3)解:①当 OC为边时(如图),四边形 OCED是矩形,此时 EC⊥OC,ED⊥OA,8分
∵C(0,2),A(-2,0)
∴OC=OA=2,此时 D、A重合,四边形 OCED是正方形.························ 9分
∴点 E的坐标为(-2,2);·································································· 10分
②当 OC为对角线时(如图),四边形 OECD是矩形,则∠ODC=90°,
由①知 OC=OA=2,
∴∠OCA=∠OAC=45°
∴∠COD=45°=∠OCD
∴OD=CD························································································ 11分
∴四边形 OECD是正方形
∴OC=DE,OC⊥DE
设 OC与 DE交于点 G
则 EG 1= 2DE
1
= 2OC=1······································································· 12分
∴点 E的坐标为(1,1)····································································· 13分
综上所述,满足条件的点 E的坐标为(-2,2)或(1,1)······················· 14分
八年级数学参考答案及评分标准 第 5 页 (共 5 页)

展开更多......

收起↑

资源列表