广东省阳江市2024一2025学年度第二学期期末七年级数学质量监测试卷(PDF版,含答案)

资源下载
  1. 二一教育资源

广东省阳江市2024一2025学年度第二学期期末七年级数学质量监测试卷(PDF版,含答案)

资源简介

机密★启用前
2024一2025学年度第二学期期末质量监测试卷
七年级数学
本试卷共4页,23小题,满分120分。考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的学校、姓名和准考证号填写在答题卡上。
将条形码粘贴在答题卡“条形码粘贴处”
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;
如需改动,用橡皮擦干净后,再选涂其他答案。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位
置上;如需改动,先划掉原来的答案,然后再写上新的答案:不准使用铅笔和涂改液。不按以
上要求作答的答案无效。
4.考生必须保持答题卡的整洁。考试结束后,将试卷和答题卡一并交回。
一、选择题:本大题共10小题,每小题3分,共30分.在每小题列出的四个选项中,只有一项是
符合题目要求的.
1.16的平方根是(
A.4
B.+4
C.±2
D.2
2.在下列生活、生产现象中,可以用基本事实“垂线段最短”来解释的是()
B
A.平板弹墨线
B.建筑工人砌墙
C.弯河道改直
D.测量跳远
3.下列几组解中,二元一次方程x一y=1的解是()
A.
x=3
B.
x=3
x=一3
(x=2
C
D.
y=2
y=-2
y=-2
y=3
4.已知aA.a-4B.2a<2b
C.
D.-2a<-2b
5.在2025年春节联欢晚会上,16个人形机器人身着花棉袄,手持红手帕登上舞台,与舞蹈演员
默契配合,共同演绎了舞蹈《秧BOT》·小林观看节目时受到启发,将图1中机器人的手臂抽
象为图2的示意图,其中手臂AB/1CD,∠B=∠D,∠BED=104°,则∠B的度数为()
2
图1
图2
A.166°
B.128°
C.104°
D.100°
6.下列调查中,最适合采用全面调查(普查)的是()
A.对我市中学生每周课外阅读时间情况的调查
B.对我国首艘电磁弹射航空母舰福建舰各零部件质量情况的调查
C.对我市中学生观看电影《哪吒之魔童闹海》情况的调查
D.对我市新能源汽车的电池使用寿命调查
七年级数学试卷第1页(共4页)
9.如题9图,在口ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=3cm,则CD
的长为(
)
A.3cm
B.6cm
C.9cm
D.12cm
10.已知一次函数y1=cx十b与y2=x十a的图象如题10图所示,有下列结论:①k<0;②a>0;③
关于x的方程十b=x十a的解为x=3;④当x>3时y1>2,其中正确的结论有()个,
A.4
B.3
C.2
D.1
30o
y2=x+a
225
289
y1=kx+b
4
P
题8图
题9图
题10图
题15图
二、填空题:
本大题共5小题,每小题3分,共15分.请将下列各题的正确答案填写在答题卡相
应的位置上
11.要使二次根式x十1有意义,则x应满足的条件是
12.对甲、乙两个超市在九月份每天的营业额进行调查,发现:在九月份两个超市每天营业额的平
均值相同,方差分别为S=7.5,S=2.6,则九月份每天营业额较稳定的超市是
.(填“甲”或“乙”)
13.在平面直角坐标系中,点(3,一2)到原点的距离是
14.把直线y=2x+1向上平移3个单位,平移后直线的解析式为
15.现有一张其中一个角为30°、最小边长为2的直角三角形纸片,沿如题15图所示的中位线剪
开后,将两部分拼成一个四边形,则所得四边形的周长是
三、解答题(一):本大题共3小题,每小题7分,共21分
16.计第:a÷-×+V原
17.己知y与x一1成正比例,当x=一1时,y=4.
(1)求出y与x的函数关系式:
(2)请通过计算,判断点(3,2)是否在这个函数的图象上
18.如题18-1图所示是某校篮球架实物图,如题18-2图所示是篮球架的侧面示意图,篮板边侧
AB垂直于地面.八年级的“综合与实践”数学小组开展测量篮球架篮板AB高度的实践活动.在
不便于直接测量的情况下,小组设计了如下测量方法:如题18-3图所示,小组成员将竹竿HE
垂直固定在地面CD上,小明从竹竿上的F点处观察篮板底部B点,用测角仪测量视线FB与
竹竿HE的夹角∠FB的度数为48°,接着将观察点沿着竹竿向上移动到G点,使得从G点
观察篮板顶部A点的视线GA与竹竿HE的夹角∠HGA的度数恰好等于∠HFB的度数时,在
竹竿上标注G点的位置,测量GF的长度为1m.活动分享时,小明说:“GF的长度就是篮
板AB的高度”,你认为小明的说法是否正确,并说明理由.
八年级数学试卷第2页(共4页)2024—2025 学年度第二学期期末质量监测试卷
七年级数学参考答案及评分标准
一、选择题:本大题共 10小题,每小题 3分,共 30分.
1.B 2.D 3.A 4.D 5.B 6.B 7.B 8.D 9.C 10.D
二、填空题:本小题共 5小题,每小题 3分,共 15分.
11.2 12.3万或 30000 13.9 14.2 15.22
三、解答题(一):本大题共 3小题,每小题 7分,共 21分.
16.(7分)
x y+1
解: 2- 3 =1,
3x+2y=10
3x-2y=8①
原方程可化简为 ,···································································2分
3x+2y=10②
①+②得:6x=18,··················································································· 3分
解得:x=3.···························································································· 4分
x 1把 =3代入①得:y= 2,··········································································· 6分
x=3
∴方程组的解为 1.···············································································7分y= 2
17.(7分)
解:解不等式①:4x-4≥3x-7,解得:x≥-3, ···········································2分
解不等式②:6x<x+5,解得:x<1,··························································· 4分
∴不等式组的解集为-3≤ x<1.································································· 5分
∴整数解为-3,-2,-1,0,和为-3+(-2)+(-1)+0=-6.·····················7分
18.(7分)
(1)证明:∵∠1=∠AFC,∠1+∠2=180°, ··············································· 1分
∴∠2+∠AFC=180°,
∴AB//CD.······················································································· 3分
(2)解:∵AB//CD,
∴∠DCE=∠B,················································································· 4分
∵∠B=∠D,
∴∠DCE=∠D,·················································································5分
∴AD//BE,
∵∠E=30°,
∴∠DAE=∠E=30°.·········································································· 6分
∵∠BAD=120°,
∴∠2=∠BAD-∠DAE=120°-30°=90°.·············································· 7分
七年级数学参考答案及评分标准 第 1 页 (共 5 页)
四、解答题(二):本大题共 3小题,每小题 9分,共 27分.
19.(9分)
解:(1)a=0.10,c=12,m=35;······································································3分
(2)在图 2中,B组对应的圆心角的度数是 108度;········································· 4分
补全图 1频数分布直方图,如下:···························································6分
(3)根据题意得:200×(35%+20%)=110(支)·············································8分
答:估计大约有 110支队伍能进入复赛.··················································9分
20.(9分)
x=1 x=3
解:(1)方程 x+2y=5的正整数解 , . ··············································· 2分
y=2 y=1
(2)联立 x+2y=5与 x+y=0得,
x+2y=5
,························································································ 3分
x+y=0
x=-5
解得 ,·····················································································4分
y=5
x=-5
把 代入方程 x-2y+mx+9=0中,得-5-10-5m+9=0,
y=5
m 6解得 =- 5.···················································································· 5分
(3)∵x-2y+mx+9=0,
∴(1+m)x-2y+9=0,········································································ 6分
∵无论实数 m取何值,方程 x-2y+mx+9=0总有一个公共解,
∴x=0,···························································································· 7分
∴y=4.5,·························································································· 8分
x=0
即公共解为 .············································································ 9分
y=4.5
21.(9分)
解:问题一:1.3,474.5·····················································································4分
问题二:设建设 x个大型租赁点,则建设(8-x)个小型租赁点.
根据题意,得 8000x+5000(8-x)≤50000,·············································· 6分
七年级数学参考答案及评分标准 第 2 页 (共 5 页)
10
解得 x≤ 3,·······················································································7分
∵x为正整数,
∴x的最大值为 3,
∴8-x=5.························································································8分
答:至多可以建设 3个大型租赁点和 5个小型租赁点. ······························9分
五、解答题(三):本大题共 2小题,第 22题 13分,第 23题 14分,共 27分.
22.(13分)
(1)解:∵AB//CD,
∴∠FEG=∠EFP,··············································································1分
∵EF//GH,
∴∠EFP=∠PHG,
∴∠PHG=∠FEG.············································································· 2分
(2)解:∵AB//CD,
∴∠EPF=∠PEA,·············································································· 3分
∵EP平分∠AEF,
1
∴∠AEP= 2∠AEF,
∴∠EPF 1= 2∠AEF,··········································································· 4分
∵∠AEF+∠FEG=180°,
∴∠EPF 1= 2 180°-∠FEG ,
由(1)知∠PHG=∠FEG;
EPF 1∴∠ = 2 180°-∠PHG ,······························································· 5分
∵∠EPF∶∠PHG=1∶3,
可设∠EPF=x,则∠PHG=3x,
x 1则 = 2 180°-3x ,
解得 x=36°,······················································································7分
∴∠PHG=108°,
∵EF//GH,
∴∠EFD+∠PHG=180°,
∴∠EFD=72°.·················································································· 8分
(3)解:∠PEM+∠EMF=90°;理由如下:··················································· 9分
设∠EMF=α,∠EMG=β,则∠HFM=∠HMF=α+β,
∵EF//GH,
∴∠EFM+∠HMF=180°,∠FEM=β,
∴∠EFM=180°- +β ,
∴∠EFH=∠EFM-∠HFM=180°-2 +β ,········································ 10分
七年级数学参考答案及评分标准 第 3 页 (共 5 页)
∵AB//CD,
∴∠AEF=∠EFH=180°-2 +β ,······················································11分
∵EP平分∠AEF,
PEF 1∴∠ = 2∠AEF=90°-α-β
∴∠PEM=∠PEF+FEM=90°-α-β+β=90°-α,··································12分
∵∠EMF=α,
∴∠PEM=90°-∠EMF,
∴∠PEM+∠EMF=90°.····································································13分
23.(14分)
10
解:(1)x= ;······························································································ 2分
3
(2)作 AF⊥x轴于点 F,作 BE⊥x轴于点 E,(作出图形)·································· 3分
∵A -2,4 ,B 3,2 ,
∴AF=4,OF=2,BE=2,OE=3,
设 OC=a,
1 1 1
由题意得 a+4 ·2+ a+2 ·3= 4+2 · 2+3 ,························· 5分
2 2 2
5
整理得 a=8,
2
解得 a 16= 5;
16
∴点 C的坐标为 0, 5 ;·····································································6分
(3)①作 AF⊥x轴于点 F,作 BE⊥x轴于点 E,设 DE=b,(作出图形)················7分
1 1 1
由题意得 b+2+3 ·4- b·2= 4+2 · 2+3 ,
2 2 2
解得 b=5,∴OD=5+3=8,
∴点 D的坐标为 8,0 .····································································· 10分
②作 AF⊥x轴于点 F,作 PG⊥x轴于点 G,设点 P的纵坐标为yP,
当点 P在线段 AD上时,
七年级数学参考答案及评分标准 第 4 页 (共 5 页)
3
∵S△OPD= 5 S△OAP,
S 3 3 1
1
∴ △OPD= 8 S△OAD= 8× 2×8×4=6,即 ×8× yP =6,2
y 3 PG 3∴ P = 2,此时 = 2,
1 3 1 3 1
设 DG=c,由题意得 +4 · 2+8-c + ×c× = 8+2 ·4,
2 2 2 2 2
c 15解得 = 4,
OG 15 17∴ =8- 4 = 4,
P 17 3∴点 的坐标为 4 , 2 ;
当点 P在射线 AD上时,作 PH⊥x轴于点 H,作 CQ⊥PH交 PH的延长线于点 Q,
3
∵S△OPD= 5 S△OAP,S
1
△OAD= 2×8×4=16,
∴S△OPD=24,
1
∴ ×8 yP =24,2
∴yP=-6,
设 DH=d,
∴CQ=OH 8 d 16= + ,QH=OC= 5,
1 16 1 1 16
由题意得 d+8+d · + ×d×6= 8+d · 6+ ,
2 5 2 2 5
解得 d=15,
∴OH=8+15=23,
∴点 P的坐标为 23,-6 ;
17 3
综上,点 P的坐标为 4 , 2 或 23,-6 .············································ 14分
七年级数学参考答案及评分标准 第 5 页 (共 5 页)

展开更多......

收起↑

资源列表