六年级暑假月考测试卷:第三至第四单元(含解析)-2024-2025学年下学期小学数学苏教版

资源下载
  1. 二一教育资源

六年级暑假月考测试卷:第三至第四单元(含解析)-2024-2025学年下学期小学数学苏教版

资源简介

六年级暑假月考测试卷:第三至第四单元(含解析)-2024-2025学年下学期小学数学苏教版
学校:___________姓名:___________班级:___________考号:___________
一、选择题
1.甲乙两城间的实际距离是80千米,画在地图上是4厘米。这幅地图的比例尺是( )。
A. B. C. D.
2.图形的( )只改变图形的大小而不改变形状。
A.旋转 B.平移 C.缩小
3.小学阶段学了很多数学知识,它们之间有密切的联系。下面不能正确表示它们之间关系的是( )。
A. B. C. D.
4.一幅地图的比例尺是,表示实际距离是图上距离的( )。
A.20倍 B.60倍 C.2000倍 D.6000倍
5.鸡和兔一共有15只,它们的腿有38条。鸡有( )只。
A.4 B.6 C.9 D.11
6.将一个底边长3厘米,高2厘米的三角形按放大,放大后三角形的面积是( )平方厘米。
A.6 B.12 C.24 D.36
7.一个操场,长是220米,宽是100米。要在一张长29.7厘米、宽21厘米的A4纸上画出操场的平面图,比例尺为( )比较合适。
A. B. C. D.
8.在下面各比中,能组成比例的是( )。
A.8∶6和∶3 B.6∶8和∶ C.6∶8和∶3 D.8∶6和∶
9.把一个直径是3毫米的圆形零件,画在图纸上半径是3厘米,那么这幅图纸的比例尺是( )。
A. B. C. D.
10.在比例尺是1∶10的图纸上,甲、乙两个圆直径比是2∶3,那么甲、乙两个圆实际的直径比是__________。
A.1∶10 B.1∶100 C.2∶3 D.3∶2
二、填空题
11.甲乙两地相距2千米,在一幅地图上量得甲乙两地距离是4厘米,这幅地图的比例尺是( )。在这幅地图上量得乙丙两地距离是3厘米,乙丙两地间的实际距离是( )。
12.我国《国旗法》规定,国旗的长和宽的比是。如果把一面长9厘米、宽6厘米的国旗按的比放大,那么放大后国旗的周长是( )厘米,国旗的面积是( )平方厘米。
13.一个长方形操场长100米,画在设计图上长5厘米,这幅图的比例尺是( )。在这幅图上量得操场的宽是3.5厘米,这个操场的实际占地面积是( )平方米。
14.下表中,若x和y成正比例,则a=( ),b=( );若x和y成反比例,则a=( ),b=( )。
x 10 2.5 b
y a 5 4
15.根据下面三条描述,小明在平面图上标出了相应场所的位置。
(1)少年宫在市政府的南偏西30°方向600米处。
(2)新华书店在市政府的北偏东60°方向400米处。
(3)体育馆在市政府的北偏西45°方向700米处。
量一量、算一算,上图中( )的位置标注正确。
16.在3、4、9三个数中增加一个数组成比例,这个数最大是( ),最小是( )。
三、判断题
17.在中,1.6和8是比例的外项,2和10是比例的内项。( )
18.甲数的等于乙数的,那么甲∶乙=5∶6。( )
19.一个比例由四个不同的数组成,其中最大的数和最小的数要么都是外项,要么都是内项。( )
20.已知∶a=b∶5,则a、b互为倒数。( )
21.图上1厘米表示实际距离0.5千米,这幅地图的比例尺是1∶5000。( )
四、计算题
22.解方程或比例。
(1)3.2x-4×3=52 (2)1.25∶0.25=x∶1.6 (3)
23.求未知数。

五、作图题
24.文苑超市位于学校北偏东30度方向600米处,少年宫位于学校正西方向400米处,请你先确定一个恰当的比例尺。画在平面图上,标出文苑超市和少年宫的位置。
六、解答题
25.下面是广场上几个花坛的平面图,请你从中选择一个,测量并计算出它的实际占地面积。
26.按要求填一填,画一画。
(1)长方形顶点A的位置用数对表示是( ),把长方形绕点A逆时针旋转90°,画出旋转后的图形。
(2)按2∶1的比画出三角形放大后的图形,原来的三角形面积是放大后的。
(3)画一个面积与长方形面积相等的等腰梯形,并画出它的对称轴。
27.现有数量相同的鸡和兔放在同一个笼子里,已知鸡脚比兔脚少32只。鸡和兔各有多少只?
28.王老师将114个排球放入5个大筐和4个小筐,每个小筐放的排球数量相当于大筐的。每个大筐和每个小筐各放了多少个?
29.两袋大米共重440千克,甲袋大米吃掉,乙袋大米吃掉,甲乙两袋中所剩大米重量的比是8∶5。原来甲袋大米重( )千克,乙袋大米重( )千克。
《六年级暑假月考测试卷:第三至第四单元(含解析)-2024-2025学年下学期小学数学苏教版》参考答案
题号 1 2 3 4 5 6 7 8 9 10
答案 D C A C D B D B D C
1.D
【分析】比例尺是表示图上一条线段的长度与地面相应线段的实际长度之比;比例尺=图上距离∶实际距离。
【详解】80千米厘米
4厘米∶8000000厘米
=(4÷4)∶(8000000÷4)
这幅地图的比例尺是。
故答案为:D
2.C
【分析】A.在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转。
B.平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的运动叫做图形的平移。
C.图形的放大或缩小是指围成图形的每条线段按比例放大或缩小。
【详解】A.图形的旋转只改变图形的位置,不改变图形的大小和形状,不符合题意;
B.图形的平移只改变图形的位置,不改变图形的大小和形状,不符合题意;
C.图形的缩小只改变图形的大小而不改变形状,符合题意。
故答案为:C
3.A
【分析】两种相关联的量,比值一定是成正比例关系,乘积一定是成反比例关系。
含有未知数的等式是方程。
根据三角形的分类,三角形按边分:等腰三角形,等边三角形,一般三角形;按角分:锐角三角形,直角三角形,钝角三角形。
因数与倍数的关系,一个数的最大因数和最小倍数都是它本身;据此解答即可。
【详解】A.正比例和反比例是并列关系,不是包含关系,错误;
B.方程一定是等式,等式不一定是方程,等式包含方程,正确;
C.一般三角形;按角分:锐角三角形,直角三角形,钝角三角形,三者是并列关系,正确;
D.a的最大因数和最小倍数都是它本身a,所以a的因数和倍数有相交的部分,正确。
故答案为:A
4.C
【分析】由线段比例知:图上1厘米代表实际距离20米,用20米除以1厘米就是实际距离是图上距离的倍数。
【详解】20米=2000厘米
2000÷1=2000
表示实际距离是图上距离的2000倍。
故答案为:C
5.D
【分析】假设全是兔,应该有(4×15)条腿,比实际多了(4×15-38)条腿,因为将鸡看成兔,每只鸡多算了(4-2)条腿,比实际多的腿数÷每只鸡多算的腿数=鸡的只数,据此列式计算。
【详解】(4×15-38)÷(4-2)
=(60-38)÷2
=22÷2
=11(只)
鸡有11只。
故答案为:D
6.B
【分析】将三角形的各边都扩大到原来的2倍,再根据三角形的面积公式:S=ah÷2,据此进行计算即可。
【详解】(3×2)×(2×2)÷2
=6×4÷2
=24÷2
=12(平方厘米)
则放大后三角形的面积是12平方厘米。
故答案为:B
【点睛】本题考查图形的放大,明确放大的是图形的各个边长是解题的关键。
7.D
【分析】根据公式:图上距离=实际距离×比例尺,逐项分析把每种比例尺图上的距离求出来,画出的图形和A4纸的大小差不多大,不能小于太多即可。
【详解】220米=22000厘米,100米=10000厘米
A.22000×=220(厘米),220>29.7,不符合题意;
B.22000×=44(厘米),44>29.7,不符合题意;
C.22000×=2.2(厘米),2.2远小于29.7,不符合题意;
D.22000×=22(厘米),22<29.7,符合题意。
故答案为:D
【点睛】本题主要考查图形距离和实际距离的换算,熟练掌握它的公式并灵活运用。
8.B
【分析】我们假设选项中的两个比可以组成比例,然后根据比例的基本性质“两内项之积等于两外项之积”,分别计算出两内项之积和两外项之积,相等可以组成比例,不相等则不能组成比例。
【详解】A.两内项之积:,两外项之积:8×3=24,≠24,所以8∶6和不能组成比例,该选项错误;
B.两内项之积:,两外项之积:,2=2,所以6∶8和 能组成比例,该选项正确;
C.两内项之积:,两外项之积:6×3=18, 2 ≠18,所以6∶8和 不能组成比例,该选项错误;
D.两内项之积: ,两外项之积:,≠,所以8∶6和不能组成比例,该选项错误。
故答案为:B
9.D
【分析】根据比例尺的意义,比例尺=图上距离∶实际距离,代入数据即可解答。
【详解】3×2=6(厘米)=60毫米
60毫米∶3毫米=20∶1
这幅图纸的比例尺是20∶1。
故答案为:D
【点睛】本题考查比例尺的意义,注意单位名数的统一。
10.C
【分析】图上距离与实际距离的比叫做比例尺。两个圆按相同的比例尺画到图纸上,直径比不变,据此分析。
【详解】根据分析可知,在比例尺是1∶10的图纸上,甲、乙两个圆直径比是2∶3,那么甲、乙两个圆实际的直径比是2∶3。
故答案为:C
【点睛】比例尺没有单位名称。为了方便,通常把比例尺的前项化作1(图上距离大于实际距离的,常把后项化为1)。
11. 1∶50000 1.5千米
【分析】根据:比例尺=图上距离∶实际距离,代入数据,求出这幅地图的比例尺;再根据:实际距离=图上距离÷比例尺,代入数据,求出乙丙两地间的实际距离。
【详解】2千米=200000厘米
4∶200000
=(4÷4)∶(200000÷4)
=1∶50000

=3×50000
=150000(厘米)
150000厘米=1.5千米
【点睛】根据比例尺的意义以及图上距离和实际距离的换算知识,进行解答。
12. 150 1350
【分析】根据图形放大的方法,先分别求出放大5倍后,国旗的长、宽各是多少厘米,再根据长方形的周长=(长+宽)×2,长方形的面积=长×宽,把数据代入公式解答。
【详解】9×5=45(厘米)
6×5=30(厘米)
(45+30)×2
=75×2
=150(厘米)
45×30=1350(平方厘米)
放大后国旗的周长是150厘米,面积是1350平方厘米。
【点睛】此题考查的目的是理解掌握图形放大的方法及应用,长方形的周长公式、面积公式及应用。
13. 1∶2000/ 7000
【分析】图上距离∶实际距离=比例尺,据此先统一单位,再写出比,并化成前项是1的比例尺。在这幅图上量得操场的宽是3.5厘米,用3.5除以比例尺即可求出操场实际的宽,再根据长方形的面积=长×宽即可解答。
【详解】100米=10000厘米,5∶10000=1∶2000
则这幅图的比例尺是1∶2000。
3.5÷=3.5×2000=7000(厘米)=70米
100×70=7000(平方米)
则这个操场的实际占地面积是7000平方米。
14. 20 2 1.25/ 3.125/
【分析】(1)如果表中x和y成正比例,说明x和y对应的比值一定,根据两次的比值相等并解比例即可;
(2)如果表中x和y成反比例,说明x和y对应的乘积一定,根据两次的乘积相等进行解答即可。
【详解】(1)10∶a=2.5∶5
2.5a=10×5
2.5a=50
2.5a÷2.5=50÷2.5
a=20
b∶4=2.5∶5
5b=2.5×4
5b=10
5b÷5=10÷5
b=2
所以,x和y成正比例,则a=20,b=2。
(2)10a=2.5×5
10a=12.5
10a÷10=12.5÷10
a=1.25
4b=2.5×5
4b÷4=2.5×5÷4
b=12.5÷4
b=3.125
所以,若x和y成反比例,则a=1.25,b=3.125。
15.体育馆
【分析】图中的线段比例尺表示图上1厘米相当于实际距离200米,先量得各场所与市政府的图上距离,再乘200米,即可得出各场所与市政府的实际距离,与原题中的实际距离进行对比,判断是否正确;
以市政府为观测点,以图上的“上北下南,左西右东”确定方向,结合原题中的方向、角度和距离确定各场所在图中的位置是否正确。
【详解】(1)量得少年宫与市政府的图上距离是3厘米,则实际距离是3×200=600(米)。
少年宫在市政府的西偏南30°方向600米处,原图标注错误。
(2)量得新华书店与市政府的图上距离是4厘米,则实际距离是4×200=800(米)。
新华书店在市政府的北偏东60°方向800米处,原图标注错误。
(3)量得体育馆与市政府的图上距离是3.5厘米,则实际距离是3.5×200=700(米)。
体育馆在市政府的北偏西45°方向700米处,原图标注正确。
所以,图中(体育馆)的位置标注正确。
16. 12 /
【分析】如果使配上的这个数最大,只要用给出的三个数中较大的两个数4和9做这个比例的两个外项或内项,那么最小的数3和要求的这个数就做比例的两个内项或外项;
如果使配上的这个数最小,只要用给出的三个数中较小的两个数3和4做这个比例的两个外项或内项,那么最大的数9和要求的这个数就作为做比例的两个内项或外项;进而根据比例的性质求解。
【详解】因为4×9=36
36÷3=12
所以这个数最大是12。
因为3×4=12
12÷9==
所以这个数最小是或。
【点睛】解决此题关键是明确使配上的这个数最大或最小,必须得用哪两个数做外项或内项,进而根据比例的性质求解。
17.×
【分析】组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项;据此解答。
【详解】根据对比例的认识可知:在中,1.6和10是比例的外项,2和8是比例的内项;原说法错误。
故答案为:×
【点睛】本题考查对比例各项的认识,较为简单。
18.√
【分析】由题意可得:甲数的等于乙数的,得出甲数×=乙数×,再根据比的基本性质的逆运算,即可求出甲与乙的比。
【详解】甲数×=乙数×
甲∶乙=∶=5∶6
故答案为:√
【点睛】此题应根据比例基本性质的逆运算进行解答。
19.√
【分析】假设组成比例的四个数分别是A、B、C、D;组成的比例是:A∶B=C∶D;根据比例的基本性质:AD=BC;由此可知,要想使这个等式成立,必须满足最大的数和最小的数要么都是外项,要么都是内项,据此解答。
【详解】根据分析可知,一个比例有四个不同的数组成,其中最大的数和最小的数要么都是外项,要么都是内项。
原题干说的正确。
故答案为:√
【点睛】根据比例的基本性质:两个外项之积等于内项之积;据此解答。
20.√
【分析】乘积是1的两个数互为倒数,已知∶a=b∶5,则ab=×5=1;据此判断。
【详解】由分析得:
ab=×5=1
所以a、b互为倒数,原题说法正确。
故答案为:√
【点睛】此题考查的目的是理解倒数的意义,掌握求倒数的方法。
21.×
【分析】比例尺=图上距离∶实际距离,据此结合图上1厘米表示实际距离0.5千米,1千米=100000厘米求出这幅地图的比例尺,再判断即可。
【详解】0.5千米=50000厘米
图上距离∶实际距离
=1厘米∶50000厘米
=1∶50000
这幅地图的比例尺是1∶50000。
故答案为:×
22.(1)x=20;(2)x=8;(3)x=3
【分析】(1)先计算出4×3=12,两边再同时加上12,最后两边再同时除以3.2;
(2)根据比例的基本性质,先把比例化为方程:0.25x=1.25×1.6,两边再同时除以0.25;
(3)方程两边同时减去,两边再同时除以。
【详解】(1)3.2x-4×3=52
解:3.2x-12=52
3.2x-12+12=52+12
3.2x=64
3.2x÷3.2=64÷3.2
x=20
(2)1.25∶0.25=x∶1.6
解:0.25x=1.25×1.6
0.25x=2
0.25x÷0.25=2÷0.25
x=8
(3)
解:
x=-
x=×27
x=3
23.;;
【分析】,根据等式的性质1和2,两边同时+,再同时÷2即可;
,先将左边合并成,根据等式的性质2,两边同时÷即可;
,根据比例的基本性质,先写成的形式,根据等式的性质2,两边同时÷即可。
【详解】
解:
解:
解:
24.见详解
【分析】600米=60000厘米;400厘米=40000厘米;所以可选择1∶20000的比例尺;
根据图上距离=实际距离×比例尺,代入数据,求出学校到文苑超市的图上距离,学校到少年宫图上距离;再根据地图上方向的规定“上北下南,左西右东”,以学校为观测点,画出文苑超市和少年宫的位置(答案不唯一)。
【详解】比例尺为1∶20000。
600米=60000厘米;
学校到文苑超市的图上距离:
60000×=3(厘米)
400米=40000厘米;
40000×=2(厘米)
如图:
(答案不唯一)
25.50.24平方米(答案不唯一)
【分析】以选择圆形为例,在图上测量圆的半径是2厘米,从图上可知比例尺为1∶200,根据实际距离=图上距离÷比例尺计算出圆的半径实际长度,再根据圆的面积=πr2,把数据代入公式即可解答。
【详解】我选择的是圆形花坛
从图上量出圆的半径是2厘米
2÷=2×200=400(厘米)
400厘米=4米
3.14×42
=3.14×16
=50.24(平方米)
答:这个圆形花坛的占地面积是50.24平方米。
(答案不唯一)
26.(1)(5,4)
(2)
(1)(2)(3)作图见详解
【分析】(1)平面内,从左往右数是列数,从下往上数是行数,以(列数,行数)的形式表示位置,就是数对;保持A点不动,其余各部分均绕A点逆时针旋转90°,可得到旋转后的图形;
(2)先求得放大后三角形的底和高,画出三角形后,再分别求得原来的面积、放大后的面积,要求得原来的三角形的面积是放大后的几分之几,用原来的面积除以放大后的面积,得数能约分的要约分;
(3)先求得长方形的面积,2×3=6;再假设等腰梯形的上下底分别为2、4,则高为6×2÷(2+4)=2,画出这个等腰梯形;
把一个图形沿着某一条直线对折,如果直线两侧的部分能完全重合,那么这个图形就是轴对称图形。这条直线就是这个图形的对称轴,连接任意一组对应点的线段都被对称轴垂直平分。可在等腰梯形上找出一组对应点,把对应点的连线垂直且平分的直线就是对称轴。
【详解】如图:
(1)长方形顶点A的位置用数对表示是(5,4)。
(2)2×2=4
3×2=6
3×2÷2
=6÷2
=3
6×4÷2
=24÷2
=12
3÷12=
(3)2×3=6
6×2÷(2+4)
=12÷6
=2
【点睛】考查了用数对表示物体的位置、旋转图形、图形的放大与缩小以及画对称轴,需要学生掌握作图的相关要素,且熟悉多边形的面积公式。
27.16只
【分析】根据题意,设鸡兔各有x只,则根据等量关系:兔的脚数-鸡的脚数=32,据此列出方程解决问题。
【详解】解:设鸡兔各有x只,则根据题意可得方程:
4x-2x=32
2x=32
x=16
答:鸡兔各有16只。
【点睛】此题属于含有两个未知数的应用题,这类题用方程解答比较容易,关键是找准数量间的相等关系,兔的脚数-鸡的脚数=32,进而列并解方程即可。
28.18个;6个
【分析】根据题意,我们可以设大筐的排球数量为个,则小筐放的排球数量为个,根据等量关系“5个大筐放的排球数量+4个小筐放的排球数量=114”列出方程求解,再把x的值代入求得小筐放的排球数量,据此解答即可。
【详解】解:设大筐的排球数量为个,则小筐放的排球数量为个。
5+4×=114
5x+=114
=114
÷=114÷
=114×
=18
小筐放的排球数量:==6(个)
答:每个大筐放了18个,每个小筐放了6个。
29. 240 200
【分析】设原来甲袋大米重x千克,则原来乙袋重(440-x)千克,分别将原来甲乙两袋大米的质量看作单位“1”,甲袋大米吃掉,还剩(1-),乙袋大米吃掉,还剩(1-),原来甲袋大米质量×剩下的对应分率=甲袋剩下的质量,原来乙袋大米质量×剩下的对应分率=乙袋剩下的质量,根据甲袋剩下的质量∶乙袋剩下的质量=8∶5,列出比例求出x的值是原来甲袋大米质量,总质量-原来甲袋大米质量=原来乙袋大米质量。
【详解】解:设原来甲袋大米重x千克。
(1-)x∶[(440-x)×(1-)]=8∶5
x∶[(440-x)] =8∶5
x∶[220-x] =8∶5
[220-x]×8=x×5
1760-4x=x
1760-4x+4x =x+4x
x=1760
x÷=1760÷
x=1760×
x=240
440-240=200(千克)
原来甲袋大米重240千克,乙袋大米重200千克。
【点睛】关键是理解分数乘法的意义,用比例解决问题只要比例两边的比统一即可。
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)

展开更多......

收起↑

资源预览