福建省福州福清市2024-2025学年高二下学期期末考试数学试题(PDF版,含答案)

资源下载
  1. 二一教育资源

福建省福州福清市2024-2025学年高二下学期期末考试数学试题(PDF版,含答案)

资源简介

2024—2025 学年第二学期高二年期末质量检测
数学参考答案及评分细则
评分说明:
1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题
的主要考查内容比照评分标准制定相应的评分细则.
2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的
内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的
一半;如果后继部分的解答有较严重的错误,就不再给分.
3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.
4.只给整数分数.选择题和填空题不给中间分.
一、单项选择题:本题共 8 小题,每小题 5 分,满分 40 分.在每小题给出的四个选项中,
只有一项是符合题目要求的.
1.B 2.B 3.B 4.A
5.D 6.C 7.C 8.A
二、多项选择题:本题共 3 小题,每小题 6 分,满分 18 分.在每小题给出的四个选项中,
有多项是符合题目要求的.全部选对的得 6分,部分选对的得部分分,有选错的得 0分.
9.AD 10.AC 11.ABD
二、填空题:每小题 5 分,满分 15 分.
22
12.64 13. 0.88 (或者写 ) 14. 0,1 25
三、解答题:本大题共 6小题,共 77 分.解答应写出文字说明,证明过程或演算步骤.
15.解:(1)法一:由二项式定理,得
(1 2x)5 C 05 C
1
5 (2x) C
2 2
5 (2x) C
3
5 (2x)
3 C 45 (2x)
4 C 5 (2x)55
1 10x 40x 2 80x3 80x 4 32x5,则 a4 80 .·········································· 6 分
法二:由通项公式,得T 45 C5 (2x)
4 5 16x4 80x4,则 a4 80 .··································· 6 分
(2)法一:因为 (1 2x)5 a0 a1x a2x
2 a3x
3 a x44 a5x
5 ,
所以令 x 0,得 a0 1,······················································································9 分
令 x 1,得 a0 a
5
1 a2 a3 a4 a5 3
则 a1 a2 a3 a4 a5 243 1 242 .······································································13 分
法二:由二项式定理,得 (1 2x)5 C0 C1(2x) C 2 (2x)2 C3 (2x)3 C 4 (2x)45 5 5 5 5 C
5
5 (2x)
5
1 10x 40x2 80x3 80x4 32x5 ········································································· 10 分
因为 (1 2x)5 a 2 3 4 50 a1x a2x a3x a4x a5x
数学参考答案及评分细则 (第 1页 共 4页)
{#{QQABIQcl4wiwggRACA7bE0V4CQuQkJATJSoGBRCQuAwCyQNAFAA=}#}
所以 a1 10, a2 40, a3 80, a4 80, a5 32,··················································12 分
所以 a1 a2 a3 a4 a5 242.············································································13 分
C2C1 35 5 C5 50 10 116.解:(1)设甲测试合格为事件 A,则 P A 3 .·······················C10 120 2
6 分
(2)甲答对的试题数 X可以为 0,1,2,3,······················································· 8 分
3 1 2 2 1 3
P X 0 C5 1 3 , P X 1
C
5
C5 5 C5C5 5 C5 1
C 12 C3
P X 2 P X 3
10 10 12
, C310 12
, C3 ,10 12
·················································································································· 13 分
(注:算错一个扣 1 分)
所以 X的分布列为
X 0 1 2 3
1 5 5 1
P 12 12 12 12
·················································································································· 15 分
17.解:(1)由问卷调查的成绩 近似服从正态分布 N (77, 2 ),且 P(77 80) 0.3,
则 P( 80) P( 77) P(77 80) 0.5 0.3 0.2,················································ 2 分
于是1000 0.2 200,························································································ 4分
所以抽取市民中问卷成绩在 80分以上的市民人数约为 200人.································ 5 分
1
(2)由(1)知,对“数博会”的关注度较高事件的概率为 p ,···························6 分
5
1
X 的可能取值为 0,1,2,3,且 X B(3, ),························································5 8 分
P(X 0) C0 (1 4 64则 3 )
0 ( )3 , P(X 1) C1 (
1)1(4 3 )
2 48 ,
5 5 125 5 5 125
P(X 2) C2 (1)2 (4)1 12 P(X 3) C3 (1 3 4 0 13 , 3 ) ( ) ,··········································· 13 分5 5 125 5 5 125
所以 X 的分布列为:
X 0 1 2 3
64 48 12 1
P
125 125 125 125
1 3
X 的数学期望为 E(X ) 3 .·······································································15 分
5 5
18.解:(1)当 a 0时, f (x) ex ,则 f (x) ex,···············································1 分
原点 0,0 不在曲线 y f x 上,
设过原点的直线与曲线 y f x x相切于点 P x ,e 00 .
数学参考答案及评分细则 (第 2页 共 4页)
{#{QQABIQcl4wiwggRACA7bE0V4CQuQkJATJSoGBRCQuAwCyQNAFAA=}#}
x0
k ex e 0则切线斜率 0 ,············································································· 2 分
x0 0
解得 x0 1,切点坐标为 1,e ,·········································································· 3 分
所以切线斜率 k e,······················································································· 4 分
故所求切线方程为 y ex.················································································5 分
(2) f (x)的定义域为R , f (x) e x a ,··························································· 6 分
①当 a 0时, f (x) 0,可得 f (x)在R 上单调递增;············································ 7 分
②当 a 0时,令 f (x) 0,解得 x ln a,··························································· 8 分
当 x ln a时, f (x) 0;当 x ln a时, f (x) 0;···············································9 分
所以函数 f (x)在 , ln a 单调递减,在 ln a, 单调递增.·································· 10 分
综上所述,当 a 0时, f (x)在 R 上单调递增;
当 a 0, f (x)在 , ln a 内单调递减,在 ln a, 内单调递增.···························11 分
(3)由(2)得,当 a 0时 f (x)有极小值,
3 2
且 f (x)的极小值 f lna a a lna a a 1 lna a .·······································12 分
即 a2 lna 1 0.·························································································13 分
2
令 g a a lna 1, a 0,则 g a 2a 1 0,············································14 分
a
可知 g a 在 0, 内单调递增,······································································15 分
且 g 1 0,································································································· 16 分
不等式 a2 lna 1 0等价于 g a g 1 ,解得 a 1,
所以 a的取值范围为 1, .··········································································· 17 分
19解:(1)玩家甲在游戏中得 8分,则包括以下两种情况:
甲从袋子 A中随机摸出 2个红球,再将这 2个球放入袋子 B中后从袋子 B中随机摸出 2个
球同色;
甲从袋子 A中随机摸出 2个白球,再将这 2个球放入袋子 B中后从袋子 B中随机摸出 2个
白球.
C2 C2+C2 C2 C2 1 4 1 6 1
所以玩家甲在游戏中得 8分的概率为 P 22
2 3 2 4
C C2 C2
2 ·········
4 5 4 C5 6 10 6 10 6
. 5分
(注:没有文字说明不扣分)
1
(2)由(1)玩家在游戏中得 8分的概率为 P1 ,6
数学参考答案及评分细则 (第 3页 共 4页)
{#{QQABIQcl4wiwggRACA7bE0V4CQuQkJATJSoGBRCQuAwCyQNAFAA=}#}
P C
1 1 2 2
玩家在游戏中得 6分的概率为 2
C2 C2 C 2 22 2 2 9 ,
·············································6 分
C4 C4
C2 C12C
1 2 1 1 1 1 1 1
3 C C C C C C C 11
玩家在游戏中得 4分的概率为 P 2 2 1 4 2 2 2 23 C2 C2 2 2
2 ,················· 7 分
4 5 C4 C5 C4 C
2
4 18
玩家乙在游戏中获胜的情况有以下三种情况:
11 2 11
甲获得 4分,玩家乙在游戏中得 6分获胜,此情况发生的概率为 ;·············· 8 分18 9 81
11 1 11
甲获得 4分,玩家乙在游戏中得 8分获胜,此情况发生的概率为 ;·············9 分18 6 108
2 1 1
甲获得 6分,玩家乙在游戏中得 8分获胜,此情况发生的概率为 ;············· 10 分9 6 27
P 11 11 1 89所以玩家乙在游戏中获胜的概率为 .········································81 108 27 324 11 分
(3)由题意可得 X 8,10,12,14,16,·························································12 分
P X 8 11 11 121所以 , P X 10 11 2 22 C1 18 18 324 2 ,18 9 81
P X 12 C1 11 1 2 2 41 P X 14 C1 1 2 2 2 , 2 ,18 6 9 9 162 6 9 27
P X 16 1 1 1 ,·····················································································6 6 36 16 分
(注:算错一个扣 1 分,最多扣 4 分)
所以 X的分布列为
X 8 10 12 14 16
121 22 41 2 1
P 324 81 162 27 36
·················································································································· 17 分
数学参考答案及评分细则 (第 4页 共 4页)
{#{QQABIQcl4wiwggRACA7bE0V4CQuQkJATJSoGBRCQuAwCyQNAFAA=}#}2024一2025学年第二学期高二年期末质量检测
7.设函数f()=si如x-x,x0,列,则f(国的最小值和最大值分别为
数学学科试卷
D.0,35-x
6
(完卷时间:120分钟;满分:150分)
8.已知X,Y两个盒子中分别装有形状、大小、质量均相同的小球.其中,X盒中有3个红球,
注意事项:
1个白球;Y盒中有1个红球,3个白球,现从两个盒子中同时各取走一个小球,一共取三
1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名,考生要认
次,此时记X盒中的红球个数为5,Y盒中的红球个数为”,则
真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致
A.E(5)>E(),D(5)=D(7)
B.E()D(n)
2.第1卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑·如需改动,
C.E(5)>E(n),D(5)用橡皮擦干净后,再选涂其它答案标号.第Ⅱ卷用0.5毫米黑色签字笔在答题卡上书写作
D.E()答.在试题卷上作答,答案无效
二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多
3.考试结束,考生必须将答题卡交回
项是符合题目要求。全部选对的得6分,部分选对的得部分分,有选错的得0分.
9.从标号为0,1,2,3,4,5的六个蓝球和标号为6,7,8,9的四个红球中随机选出4个,
第卷
则下列说法正确的有
一、单项选择题:本大题共8小题,每小题5分,共40分在每小题给出的四个选项中,只有一
A.若选出的4个球全部为蓝球,则不同的选法有15种
项是符合题目要求的.
1.某天小丁要从福州出发去厦门,已知当天的飞机有5班,动车有12趟,高铁有10个车次,
B.若选出的4个球中蓝球红球各有2个,则有120种不同的选法
则小丁当天出行的方案共有
C.若蓝球的0号和红球的6号必须在选出的4个球内,则有56种不同的选法
A,12种
B.27种
D.若蓝球的0号和红球的6号至少有1个在选出的4个球内,则有140种不同的选法
C.120种
D.600种
10.设函数f(x)=x(x-1),则
2.计算A +2C的值是
A.48
B.76
A.x=1是f(x)的极小值点
C.148
,应D.176
B.f(x)的对称中心是(0,0)
3.设函数f(x)=ax+nx,若f'()=2,则a=
C.当x>1时,f(x)>f(x)
D.当0A.0
B.1
C.2
D.3
11.乒乓球,被称为中国的“国球”.某次比赛采用三局两胜制,当参赛选手甲、乙两位中有一
4.设随机变量X~N(2,a2),P(-15)=
位赢得两局比赛时,就由该选手晋级而比赛结束.每局比赛都要分出胜负,且每局比赛的胜
A.0.2
B.0.3
C.0.4
D.0.6
负不受之前比赛结果影响.假设甲在任一局赢球的概率为(0≤p≤),有选手晋级所需要的
5.已知二项式(3x-1)°的展开式中仅有第5项的二项式系数最大,则n为
比赛局数的期望值记为f(),则下列说法中不正确的是
A.15
B.10
C.9
D.8
A.打满三局结束比赛的概率为p(1-p)+p(1-p)
6.从5,6,7,8,9中任取两个不同的数,事件A=“取到的两个数之和为偶数”,事件B=“取
B.f(p)的常数项为4
到的两个数均为偶数”,则P(B4)=
A.号
B.3
c.4
D.8
C.函数/)在上单调递暗
D.-2
数学试卷第1页,共4页
数学试卷第2页,共4页

展开更多......

收起↑

资源列表