湖南省永州市2024-2025学年高一下学期7月期末质量监测数学试卷(图片版,含部分解析)

资源下载
  1. 二一教育资源

湖南省永州市2024-2025学年高一下学期7月期末质量监测数学试卷(图片版,含部分解析)

资源简介

永州市 2025年上期高一期末质量监测试卷
数学参考答案及评分标准
一、单项选择题
题号 1 2 3 4 5 6 7 8
答案 B A C D B C D C
二、多项选择题
题号 9 10 11
答案 BD ABC ABD
三、填空题

12.15π 13. 14.

部分小题的解析:
8. 解析:在锐角△ABC中, 2S ac sin A c2 sinC ,
所以 ac sin B ac sin A c2 sin c ,即 a sin B a sin A csinC
由正弦定理有 ab a2 c2,又由余弦定理 c2 a2 b2 2abcosC
ab a2 a2 b2 2abcosC, a 2a cosC b
由正弦定理有 sin A 2sin AcosC sin B sin(A C) sin AcosC cos AsinC
sin A sinC cos A cosC sin A sin(C A)
△ABC,所以 A C A,即C 2A

0 A


2
又锐角△ABC 中, 0 B A C 3A


2
0 C 2A
2
3
A tan A ,1
6 4 3
tan(C 2 2
7 3
A) tan A 3, ,
tan A tan A 3
故 tan(C 2 A) 的可能取值为 4,答案选 C.
tan A
永州市 2025年上期高一期末质量监测试卷·数学参考答案及评分标准 第 1页(共 7页)
11.解析:
对于 A选项,因为平面PAD 平面ABCD,交线为 AD,
又CD 平面ABCD,CD AD,所以CD 平面PAD ,
又因为 AP 平面PAD ,所以 AP CD,
又因为 AP PD,PD CD D,PD 平面PCD,CD 平面PCD,
所以 AP 平面PCD ,故 A正确;
对于 B选项,取 AD中点为 F ,连接 EF, BF ,又因为 E为 AP中点,
所以 EF // PD所以 BEF为 BE 与 PD所成角(或补角),
又 EF 平面 PCD PCD, PD 平面 PCD,所以 EF //平面 PCD,
又因为 BE //平面 PCD,EF BE E, EF 平面 BEF , BF 平面 BEF ,
所以平面 BEF // 平面 PCD ,又平面 BEF 平面 ABCD BF ,平面 PCD 平面
ABCD CD,所以CD//BF ,又CD 平面 PAD ,所以 BF 平面 PAD ,EF 平面 PAD ,
所以 BF EF, BF AB2 AF 2 2, EF 1,所以 tan BEF
BF
2,所以 B正确
EF
对于 C选项,因为 APC 和 ADC为直角三角形,所以三棱锥 P ACD的外接球球心
3
为 AC的中点,半径为 ,所以三棱锥 P ACD的外接球表面积为 9 ,故 C错误
2
对于 D选项,连接 PF ,则 PF 为三棱锥 P ABCD的高,又 PQ ,故 QF ,
所以动点Q的轨迹是以 F 为圆心 1为半径的半圆,故 D正确;
故正确答案为:ABD
14.解析:
令CM CB,CN CA π, |CM | |CN | ,C
3
所以 CMN 为等边三角形,

| 2CB (1 ) 3 CA | | CM (1 )CN |

记CQ CM (1 )CN,M,N,Q三点共线
当CQ垂直 MN时, |CQ |最小,
则 |CQ |的最小值为 .
永州市 2025年上期高一期末质量监测试卷·数学参考答案及评分标准 第 2页(共 7页)
四、解答题
15. 解析:

(1)由题可知,
a b
a b ····························································································· 2分
a 1,-2 ,b ,1 ············································································3分

a b 1 (-2) 1 0 ········································································5分
解得 2 ···························································································· 6分

(2)由 a (1, 2), c ( 2,3),得 a 2c ( 3,4) ··············································· 7分

ka c (k 2, 2k 3) ··········································································· 8分
a c与 ka c平行··············································································9分
a 2c (ka c ) ··············································································· 10分
3 ( 2k 3) 4(k 2) 0 ···································································12分
k ····························································································· 13分

16.解析:
(1)因为 (0.015 a a 0.030 0.003 0.002) 10 1 ··········································1分
所以 a 0.025 ·······················································································2分
参加这次测评学生成绩的众数为 75 分······················································ 3分
由所给频率分布直方图知
100名学生成绩在 , 的频率为 0.4,在 , 的频率为 0.65,·················· 4分
所以参加这次问卷调查学生成绩的中位数在 , 内 ································5分
设中位数为 x,则 0.40 (x 60) 0.025 0.50,·········································· 6分
解得 x 64
所以参加这次问卷调查学生成绩的中位数为 64.·········································7分
(2)在抽查的 100名学生中,成绩在 , 中的学生有0.003 10 100 3人,·····8分
成绩在 , 中的学生有0.002 10 100 2人,·····································9分
记 , 中的 3人为 1,2,3,
记 , 中的 2人为 a,b ··································································· 10分
所有基本事件有:
永州市 2025年上期高一期末质量监测试卷·数学参考答案及评分标准 第 3页(共 7页)
1, 2 , 1,3 , 1,a , 1,b , 2,3 , 2,a , 2,b , 3,a , 3,b , a,b 共 10种,············· 12分
来自同一组的有: 1, 2 , 1,3 , 2,3 , a,b ,共 4种情况, ·························· 13分
4 2
故恰好来自同一组的概率 p . ···················································15分
10 5
17.解析:
a b c
(1)依题意,由正弦定理 ··················································· 1分
sin A sin B sinC
得 2sin A(sinC cosB sin B cosC) 3 sin A ·················································· 2分
2sin Asin(B C) 3 sin A ·····································································3分
即 2sin Asin A 3 sin A ·········································································· 4分
π
又在锐角 ABC 中,有 A

0

, ,所以 sin A 0,······································5分
2
所以 sinA 3 ,···················································································6分
2
π
所以 A ;·························································································
3 7分
π 2π
(2)结合(1)可得 A ,B C π A ,
3 3
a b c
由 a 3,则根据正弦定理有 2,··································8分
sinA sinB sinC
得b 2sinB,c 2sinC,········································································· 9分
根据余弦定理有a2 b2 c2 2bccos A,得b2 c2 3 bc,··························10分
b2 c2 bc 3 2 2bc 3 8sin B sinC 3 8sin B sin( B) ·························11分
3

3 4 3 sin B cosB 4sin 2 B 3 2 3 sin 2B 2cos2B 5 4sin(2B ) ………12分
6
又 ABC

为锐角三角形,则有 B 0,
π 2π B 0, π π π ,2 3
,得 B , ,
2 6 2
2B 5 , ··················································································6 6 6
13分

sin
1
2B

,1 ··············································································14分 6 2
b2 c2 bc 5 4sin 2B 故 7,9 6 ·······················································15分
永州市 2025年上期高一期末质量监测试卷·数学参考答案及评分标准 第 4页(共 7页)
18.解析:
(1)(ⅰ)连接 AC交 BD于点 O,连接 EO,··················································· 1分
因为底面 ABCD为正方形,所以点 O为 AC的中点,·································· 2分
当 PE EC 时,E为 PC中点,所以 PA∥OE ············································· 3分
因为 PA 平面 BDE,OE 平面 BDE
PA∥平面 BDE ··················································································5分
o
(ⅱ)由(ⅰ)知 PA ∥平面 BDE,
所以点 A到平面 BDE的距离即为点 P到平面 BDE的距离····························· 6分
PA 底面 ABCD, PA∥OE
EO 底面 ABCD EO AO,······························································ 7分
因为底面 ABCD为正方形,所以 AO BD,所以 AO 平面 BDE ····················8分
所以 AO即为点 A到平面 BDE的距离,
AO 1 AC 2 ················································································· 9分
2
所以点 P到平面 BDE的距离为 2,························································10分
(2)当 PE 2EC时,点 E为 PC上靠近于 C的三等分点,································· 11分
连接 EO, PC PA AC ,EC ,··································· 12分

又 PB PD,BC DC,PC PC , PBC PDC,点 E在公共边 PC上···· 13分
BE DE , EO BD又OC BD
EOC为二面角 P BD C 的平面角···················································· 14分
Rt PAC cos PCA AC 2 2 6在 中, ,
PC 2 3 3
永州市 2025年上期高一期末质量监测试卷·数学参考答案及评分标准 第 5页(共 7页)
在 EOC中,在由余弦定理得:
EO2 OC 2 EC 2 2OC 4 EC cos PCA 2 2 2 2 3 6 2 ··········· 15分
3 3 3 3
2
EO2 OC 2 EC 2 2
4

cos EOC 3 3 3
2EO OC 6 3 ······································16分2 2
3
所以二面角 P BD C 3的余弦值为 ·····················································17分
3
(其它非空间向量方法酌情给分)
19.解析:
2 3
(1)记“接收到的两个数字中有且只有一个正确”为事件A ,由已知 p1 ,p2 ,····1分3 4
事件 A包含两种情况:
0 2 3第一种数字 接收正确数字 1错误,概率为: (1 ) ································· 2分
3 4
第二种数字 0接收错误数字 1正确,概率为: (1 2 3 ) ··································3分
3 4
所以 P(A)
2
(1 3 ) (1 2 ) 3 5 ;·························································· 4分
3 4 3 4 12
(2)(i)由发送的数据为“011”可知,事件 n(X ) 2表示接收到的数据中含两个 0,
包含两种情况:①数字 0接收正确,数字 1有一个正确一个错误,
②数学 0错误,数字 1都错误,·········································5分
所以 P(n(X ) 2) 2p1 p2 (1 p2 ) (1 p1 )(1 p
2
2 ) ·················································6分
事件 n(X ) 3表示接收到的数据中含三个 0,
只有 1种情况:数字 0接收正确数字 1都错误,·········································7分
所以 P(n(X ) 3) p1 (1 p
2
2 ) ······································································ 8分
由 2P n X 2 13P n X 3 得:
2 2p1p2 (1 p2 ) (1 p1 )(1 p
2
2 ) 13p (1 p
2
1 2 )
化简得19p1p2 2 15p1 2p2 0································································· 9分
p 1
1
又因为 1 p2 , p1 2p ,上式可化为:2 2
永州市 2025年上期高一期末质量监测试卷·数学参考答案及评分标准 第 6页(共 7页)
3
4p 22 23p2 15 0 p2 或 p2 5(舍去)···············································10分4
(ⅱ)当发送的数据为“0101”,事件 n(X ) 2包含以下三种情况:
1
①两个 1传输都正确,且两个 0传输都正确,其概率为 p 2 p 21 2 ··················· 11分4
②有且只有一个 1传输正确,且有且只有一个 0传输正确,
其概率为 2p1(1 p1) 2p2 (1 p2 ) 4p1p2 (1 p1 p2 p1p2 ) 3 2(p1 p2 ),··············· 12分
③两个 1传输都错误,且两个 0传输都错误,其概率为
2
(1 p )2(1 p )2 (1 p p p p 2 3 ,······································ 13分1 2 1 2 1 2)

( p p )
2 1 2
1 3 2
所以 P(n(X ) 2) 3 2( p 1 p2 ) ( p1 p2 ) ,······································· 14分4 2
p p 1 p 1令 x p1 p2,则 1 2 , 2 ,又0 p1 1且0 p
1
2 1, p1 12 2p1 2
x p p

p p
, ·····························································15分

所以
1 3 2 11
P(n(X ) 2) 3 2( p p ) ( p p ) ( p p 2
4 1 2 2 1 2
1 2 ) 5( p1 p2 )
2

2

5 3
(p p )

1 2
2

4
5 2 3 x , 记 f (x) (x ) , ·····························································16分2 4

由二次函数的性质可知, f (x)在 , 单调递减,
所以 f (x)
15
得最大值为 f ( 2) 5 2,
2
即 P(n(X ) 2)
15
的最大值为 5 2 .··························································· 17分
2
永州市 2025年上期高一期末质量监测试卷·数学参考答案及评分标准 第 7页(共 7页)

展开更多......

收起↑

资源预览