23.2解直角三角的应用 课件(共14张PPT) 沪科版(2024)数学九年级上册

资源下载
  1. 二一教育资源

23.2解直角三角的应用 课件(共14张PPT) 沪科版(2024)数学九年级上册

资源简介

(共14张PPT)
23.2 解直角三角形及其应用
第2课时 仰角与俯角问题
学习目标
1. 巩固解直角三角形有关知识. (重点)
2. 能运用解直角三角形知识解决仰角和俯角有关的实
际问题,在解题过程中进一步体会数形结合、转化、
方程的数学思想,并从这些问题中归纳出常见的基
本模型及解题思路. (重点、难点)
导入新课
某探险者某天到达如
图所示的点A 处时,他准
备估算出离他的目的地,
海拔为3 500 m的山峰顶点
B处的水平距离.他能想出
一个可行的办法吗?
通过这节课的学习,相信你也行.

A
B


问题引入
讲授新课
解与仰俯角有关的问题

如图,在进行测量时,从下向上看,视线与水平线上方的夹角叫做仰角;从上往下看,视线与水平线下方的夹角叫做俯角.
例1 热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯 角为60°,热气球与高楼的水平距离为120m,这栋高楼有多高(结果精确到0.1m).
A
B
C
D
α
β
仰角
水平线
俯角
分析:我们知道,在视线与水平线所成的角中视线在水平线上方的是仰角,视线在水平线下方的是俯角,因此,在图中,a=30°,β=60°.
典例精析
Rt△ABD中,a =30°,AD=
120,所以利用解直角三角形的知识求出BD的长度;类似地可以求出CD的长度,进而求出BC的长度,即求出这栋楼的高度.
解:如图,a = 30°,β= 60°, AD=120.
答:这栋楼高约为277.1m.
A
B
C
D
α
β
例3 一学生要测量校园内一棵水杉树的高度.他站在距离水杉树8m的E处,测得树顶的仰角∠ACD=52°,已知测角器的架高CE=1.6m.问树高AB为多少米?(精确到0.1m)
解:在Rt△ACD中,∠ACD=52°,CD=EB=8m.由tan∠ACD= ,得 AD=CD·tan∠ACD=8×tan52°
=8×1.2799≈10.2(m).
由DB=CE=1.6 m,得 AB=AD+DB=10.2+1.6=11.8(m).
答:树高AB为11.8m.
例4 解决本章引言所提问题.如图,某校九年级学生要测量当地电视塔的高度AB,因为不能直接到达塔底B处,他们采用在发射台院外与电视塔底B成一直线的C,D两处地面上,用测角器测得电视塔顶部A的仰角分别为45°和30°,同时量得CD为50 m.已知测角器高为1 m,问电视塔的高度为多少米?(精确到1 m)
D1
A
B1
B
D
C1
C
30°
45°
D1
A
B1
B
D
C1
C
30°
45°
解 设AB1=xm.
在Rt△AC1B1中,由∠AC1B1=45°,得
C1B1=AB1.
在Rt△AC1B1中,由∠AD1B1=30°,得
∴AB=AB1+B1B≈68+1=69(m)
答:电视塔的高度为69m
如图,直升飞机在长400米的跨江大桥AB的上方P点处,在大桥的两端测得飞机的仰角分别为37°和45 °,求飞机的高度 .(结果取整数. 参考数据:sin37°≈0.8,
cos37 °≈0.6,tan 37°≈0.75)
A
B
37°
45°
400米
P
练一练
A
B
O
37°
45°
400米
P
设PO=x米,
在Rt△POB中,∠PBO=45°,
在Rt△POA中,∠PAB=37°,
OB=PO= x米.
解得x=1200.
解:作PO⊥AB交AB的延长线于O.

故飞机的高度为1200米.
当堂练习
1. 如图①,在高出海平面100米的悬崖顶A处,观测海平
面上一艘小船B,并测得它的俯角为45°,则船与观
测者之间的水平距离BC=_________米.
2. 如图②,两建筑物AB和CD的水平距离为30米,从A点
测得 D点的俯角为30°,测得C点的俯角为60°,则
建筑物CD的高为_____米.
100
图①
B
C
A
图②
B
C
A
D
30°
60°
课堂小结
利用仰俯角解直角三角形
仰角、俯角的概念
运用解直角三角形解决仰角、俯角问题
模型一
模型二
模型三
模型四
仰角、俯角问题的常见基本模型:
A
D
B
E
C

展开更多......

收起↑

资源预览