资源简介 (共16张PPT)5.长方体和正方体应用问题导入新课导入新课回忆体积单位之间的换算:1立方米=1000立方分米1立方分米=1000立方厘米1立方米=1000立方分米=1000000立方厘米李大伯计划挖一个长是2米,宽是1.6米,深是1.5米的地窖。要挖出多少立方米的土?新课学习1挖地窖问题想:要挖出的土和地窖的体积有什么关系?地窖的长、宽、深相当于长方体的什么?V=abh=2×1.6×1.5=4.8(立方米)答:要挖出4.8立方米的土。李大伯计划挖一个长是2米,宽是1.6米,深是1.5米的地窖。要挖出多少立方米的土?新课学习1挖地窖问题生活中,计量沙、土、石子等的体积时,常常把“立方米”简称为“方”。4.8立方米可以说是4.8方。某村修一条50米长的拦河坝,拦河坝的横截面是一个梯形,尺寸如下图。修这个拦河坝一共需要多少立方米土石?(单位:米)新课学习2拦河坝问题分析:拦河坝的横截面是梯形,梯形的面积=(上底+下底)×高÷2,然后再代入体积公式即可。结论总结解决问题的步骤:1、找出题中的是长方体或正方体;2、找出长方体的 长、宽、高或正方体的棱长;3、代入体积公式。某村修一条50米长的拦河坝,拦河坝的横截面是一个梯形,尺寸如下图。修这个拦河坝一共需要多少立方米土石?(单位:米)新课学习2拦河坝问题S =(a+b) ×h÷2=(3+8)×4÷2=11×4÷2=22(米)V = Sh= 22×50= 1100(立方米)答:一共需要1100立方米的土石。某地有一段古墙,墙由长方体砖砌成,尺寸如下图:1、一块砖的体积是多少立方米?V=abh=20×50×25=25000(立方厘米)25000立方厘米=0.025立方米答:一块砖的体积是0.025立方米。 某地有一段古墙,墙由长方体砖砌成,尺寸如下图:2、空缺部分的体积是多少?需要多少块砖才能补齐?V=abh=2×2×0.5=2(立方米)2÷0.025=80(块)答:空缺部分的体积是2立方米,需要80块砖。某地有一段古墙,墙由长方体砖砌成,尺寸如下图:3、古墙的体积是多少?一共有多少块砖?(古墙的体积=上下两个长方体体积之和)V=abh=6×2×0.5+(6-2)×2×0.5=10(立方米)10÷0.025=400(块)答:古墙的体积是10立方米,一共有400块砖。某地有一段古墙,墙由长方体砖砌成,尺寸如下图:3、古墙的体积是多少?一共有多少块砖?(古墙的体积=左右两个长方体体积之和)V=abh=2×2×0.5+(6-2)×(2+2)×0.5=10(立方米)10÷0.025=400(块)答:古墙的体积是10立方米,一共有400块砖。求组合图形体积的方法:1、把组合图形分解或补全;2、分解:把组合图形分解成规则的正方体或长方体,求体积之和;3、补全:求出补全后的规则的长方体或正方体的体积,减去补充部分的体积。结论总结课堂练习试一试1、下面是一根混凝土的铁路轨枕,求它的体积。18m=1800cmS=(a+b) ×h=(16+28)×16÷2=352(cm )V=Sh=352×1800=633600(cm )633600cm =0.6336m 答:轨枕的体积是0.6336m 。再见 展开更多...... 收起↑ 资源预览