资源简介 2024~2025学年度第二学期期末学业水平诊断高二数学注意事项:1.本试题满分150分,考试时间为120分钟2.答卷前,务必将姓名和准考证号填涂在答题纸上3.使用答题纸时,必须使用0.5毫米的黑色签字笔书写,要字迹工整,笔迹清晰,超出答题区书写的答案无效:在草稿纸、试题卷上答题无效,一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项符合题目要求。1.命题“Vx∈R,x2+ax+1>0”的否定为A.3x∈R,x2+ax+1>0B.x∈R,x2+ax+1<0C.3r∈R,x2+ax+1≤0D.x∈R,x2+ax+1≤02.已知集合A={x|y=1-x},B={xy=n(2-x)》,则(CRA)∩B=A.(-o,]B.1,2)C.[1,2)D.(-0,2)3.设集合A={L,3,a2},B={L,a+2},若“x∈A”是“x∈B”的必要不充分条件,则实数a的值为A.-1B.0C.1D.24函数f)=(宁-gx的零点所在的一个区间为A.(0,1)B.1,2)C.(2,3)D.(3,10)5.函数f(x)=一x-sinx在[-元,上的图象大致是6.若函数f(x)=x3+ax2+b的图象关于点(2,0)对称,则实数a的值为A.-3B.3C.-6D.67.若函数f(x)=xnx-x+k存在两个不同的零点,则实数k的取值范围为A.(-0,1)B.(0,1)C.(-o,e)D.(0,e)高二数学试题(第1页,共4页)8.已知f(x)为定义在(-o,0)U(0,+0)上的偶函数,且当x>0时,f'(x)-f(x)>x20=1,则田>x的解集为A.(-L,0)U0,+o)B.(-0,-1)U(0,1)C.(-1,0)U(0,1)D.(-0,-1)U1,+o)二、选择题:本题共3小题,每小题6分,共18分。在每小题给出的选项中,有多项符合题目要求。全部选对的得6分,部分选对的得部分分,有选错的得0分。9.下列不等关系成立的有A.307>0.7B.Ig3C.log,4>logs 6D.0.403<0.30410.若函数f()=。a2x2-3ar+21nx在x=1处取得极大值,则A.a=1B.a=2C.(2,+o)为f(x)的一个增区间D.f(x)的极小值为2ln2-411.定义在R上的奇函数f(x)满足f(2+x)=f(-x),当x∈[0,]时,f(x)=√,则下列结论正确的有A.当x∈[2,3]时,f(x)=-V3-xB.f)的图象在x=3处的切线方程为2x+2√2y-5=0C.f(x)的图象与g(x)=1g|x-1的图象所有交点的横坐标之和为10D)的图象与直线y=x+b恰有一个公共点,则实数b∈(4秋-只,4-(keZ)三、填空题:本题共3小题,每小题5分,共15分。12.已知f(x),g(x)分别为定义在R上的偶函数、奇函数,且满足f(x)+g(x)=2,则f(-1+1og23)的值为13.若实数,满足ff(x)》=。,则称x为函数f(x)的一个“二阶不动点”.给定函数2x,x≤2f(x)=则其所有“二阶不动点”的和为2-2xx>714.已知正实数a,b满足a26-4=2ab21na-4b1n2,则a2+8b的最小值为b高二数学试题(第2页,共4页) 展开更多...... 收起↑ 资源预览