资源简介 2024-2025学年上海市青浦区六年级(下)期末数学试卷(五四学制)一、选择题(共6题,每题2分,满分12分).1.将式子改写成用含的式子表示,正确的是 A. B. C. D.2.一批零件,100个合格,不合格25个,这批零件的合格率是 A. B. C. D.3.能与组成比例的是 A. B. C. D.4.圆柱体的底面半径扩大到原来的3倍,高扩大原来的2倍,体积扩大到原来的 A.6倍 B.9倍 C.18倍 D.12倍5.盲盒近来火爆,这种不确定的“盲抽”模式受到了大家的喜爱,一服装厂用某种布料生产玩偶与玩偶组合成一批盲盒,一个盲盒搭配1个玩偶和2个玩偶,已知每米布料可做1个玩偶或3个玩偶,现计划用136米这种布料生产这批盲盒(不考虑布料的损耗),设用米布料做玩偶,用米布料做玩偶,使得恰好配套,则下列方程组正确的是 A. B.C. D.6.一张半径为1厘米的圆形纸片在一个边长为5厘米正方形内任意移动,那么在该正方形内,这张圆形纸片不能覆盖到的部分的面积是 A. B. C. D.二、填空题:(本大题共12题,每题3分,满分36分)7.如果,那么 .8.化成最简整数比: .9.2024届巴黎奥运会落下帷幕,中国健儿斩获了境外奥运会的最好成绩.获奖情况如图所示,获得的金牌数占总奖牌数的 (填几分之几).10.时钟的分针长6厘米,从到,分针扫过的面积是 平方厘米.11.在比例尺是的地图上测得甲地到乙地的距离是6厘米,甲地到乙地的实际距离大约是 千米.12.小明爸爸把20000元按两年期定期存款,年利率为,存满两年到期后取出可得利息 元.13.一个盒子里有20个只有颜色不同的球,其中有10个白球、7个红球、3个绿球,从中任意摸出一个球,摸到 球的可能性最小.14.已知圆锥的底面半径为,母线长为,则这个圆锥的表面积是 .16.已知关于,的单项式与的次数相同,则 .17.将一个直角边分别为2厘米和3厘米的直角三角形,绕着直角边旋转一周形成一个圆锥,这个圆锥的体积是 .18.一把直角三角尺的一边紧贴在直线上,,,,直角三角尺先绕点顺时针旋转,使落在直线上,然后绕点顺时针旋转,使落在直线上,再绕点顺时针旋转,使落在直线上,此时,三角形的放置方式与初始的放置方式一样,我们称这样的旋转为一个周期.请问,再经过 个周期,点走过的路程就会超过?取三、计算题:(本大题共3小题,满分18分)【将下列各题的解答过程,做在答题纸的相应位置上】19.求下列式子中的值:.(2)已知,,求的最简整数比.20.(4分)解方程组:.21.(6分)化简并求值:,其中.四、解答题:(本大题共4题,满分34分)22.小丽同学共调查了 名居民的年龄;(2)扇形统计图中 , (填写百分数),并补全条形统计图;(3)扇形统计图中,表示“年龄在岁的居民”的扇形的圆心角度数是 .23.(6分)课余活动中,小杰、小明和小丽一起玩飞镖游戏,飞镖盘上区域所得分值和区域所得分值不同,每人投5次飞镖,其落点如图所示,已知小杰和小明的5次飞镖总分分别为39分和43分,求小丽的5次飞镖总分.24.(8分)右图是我区某一路口“右转危险区”的示意图,经过测量后内轮转弯半径米,前内轮转弯半径米,圆心角,求此“右转危险区”的面积和周长.25.(8分)下面是咖啡店老板制作某种奶咖的过程:第一步:在右边圆锥形的杯子中装满咖啡,倒入左边圆柱形杯子中;第二步:再往圆柱形杯子中倒入牛奶,使奶咖的高度是杯子的.问:倒入的牛奶有多少毫升?(得数用含有的式子表示)26.(7分)某地要修建一个如图1所示足球场,足球场的中间是一个长为宽为的长方形、两边为两个半圆形,建设过程中足球场场地要铺上一层厚的石灰土做垫层,如图2,石灰土堆放近似于一个圆锥,底面圆的直径为,高为.取(1)通过计算说明这堆石灰土是否够用?(2)压路机的前轮直径是2米,轮宽是2.5米,前轮每分钟转动2周,若4台压路机同时工作,将的长方形区域压完一次至少需要多少时间?(压路机掉头时间忽略不计,压路时无缝隙、无重叠)(3)计划由甲、乙两个工程队来共同铺设石灰土垫层,已知甲、乙两个工程队每天所铺设的面积之比为,实际铺设时,甲、乙两个工程队一起铺了7天后,乙工程队因故离开,由甲工程队又单独铺了2天,恰好将这足球场的石灰土垫层全部铺完,求甲、乙两个工程队每天各铺多少平方米?参考答案一、选择题(共6题,每题2分,满分12分)1.将式子改写成用含的式子表示,正确的是 A. B. C. D.解:,,故选:.2.一批零件,100个合格,不合格25个,这批零件的合格率是 A. B. C. D.解:根据合格率就是合格的零件数占零件总个数的百分之几可得:,批零件的合格率是,故选:.3.能与组成比例的是 A. B. C. D.解:,故选:.4.圆柱体的底面半径扩大到原来的3倍,高扩大原来的2倍,体积扩大到原来的 A.6倍 B.9倍 C.18倍 D.12倍解:扩大后的半径为,高为,所以体积为,是原来的18倍.故选:.5.盲盒近来火爆,这种不确定的“盲抽”模式受到了大家的喜爱,一服装厂用某种布料生产玩偶与玩偶组合成一批盲盒,一个盲盒搭配1个玩偶和2个玩偶,已知每米布料可做1个玩偶或3个玩偶,现计划用136米这种布料生产这批盲盒(不考虑布料的损耗),设用米布料做玩偶,用米布料做玩偶,使得恰好配套,则下列方程组正确的是 A. B.C. D.解:设用米布料做玩偶,用米布料做玩偶,由题意可得,,故正确.故选:.6.一张半径为1厘米的圆形纸片在一个边长为5厘米正方形内任意移动,那么在该正方形内,这张圆形纸片不能覆盖到的部分的面积是 A. B. C. D.解:如图所示,小正方形的面积是:,当圆运动到正方形的一个角上时,形成扇形,它的面积是,则这张圆形纸片“不能接触到的部分”的面积是:,故选:.二、填空题:(本大题共12题,每题3分,满分36分)7.如果,那么 .解:由,得,故答案为:.8.化成最简整数比: .解:原式.故答案为:.9.2024届巴黎奥运会落下帷幕,中国健儿斩获了境外奥运会的最好成绩.获奖情况如图所示,获得的金牌数占总奖牌数的 (填几分之几).解:.故答案为:.10.时钟的分针长6厘米,从到,分针扫过的面积是 平方厘米.解:时钟的分针从到时,分针转动了,又时钟的分针长6厘米,分针扫过的面积是:(平方厘米).故答案为:.11.在比例尺是的地图上测得甲地到乙地的距离是6厘米,甲地到乙地的实际距离大约是 360 千米.解:千米,故答案为:360.12.小明爸爸把20000元按两年期定期存款,年利率为,存满两年到期后取出可得利息 580 元.解:(元,答:存满两年到期后取出可得利息580元.故答案为:580.13.体育课上,同学们围成一个圆圈做游戏,老师站在中心点上,已知这个圆圈的周长是18.84米,则每个同学与老师的距离大约是 3 米.解:设每个同学与老师的距离为 ,由题意得,解得,故答案为:3.15.已知圆锥的底面半径为,母线长为,则这个圆锥的表面积是 .解:根据圆锥侧面积公式可得:,故答案为:.16.已知关于,的单项式与的次数相同,则 .解:关于,的单项式与的次数相同,,解得:.故答案为:.17.将一个直角边分别为2厘米和3厘米的直角三角形,绕着直角边旋转一周形成一个圆锥,这个圆锥的体积是 12.56立方厘米或18.84立方厘米 .解:分两种情况:以2厘米的直角边所在直线为轴旋转一周得到的圆锥体积为:(立方厘米),以3厘米的直角边所在直线为轴旋转一周得到的圆锥体积为:(立方厘米),故答案为:12.56立方厘米或18.84立方厘米.18.一把直角三角尺的一边紧贴在直线上,,,,直角三角尺先绕点顺时针旋转,使落在直线上,然后绕点顺时针旋转,使落在直线上,再绕点顺时针旋转,使落在直线上,此时,三角形的放置方式与初始的放置方式一样,我们称这样的旋转为一个周期.请问,再经过 25 个周期,点走过的路程就会超过?取解:一把直角三角尺的一边紧贴在直线上,,,,,点走过的路程为以为半径,圆心角为的扇形的弧长和以为半径,圆心角为的扇形的弧长和,三角形旋转一个周期.点走过的路程为:,,则从初始位置开始至少经过25个周期,点走过的路程会超过.故答案为:25.三、计算题:(本大题共3小题,满分18分)【将下列各题的解答过程,做在答题纸的相应位置上】19.求下列式子中的值:.(2)已知,,求的最简整数比.解:(1)由条件可得,解得;(2),,.20.(4分)解方程组:.解:,①③,得④②③,得⑤④、⑤联立方程组得,解得,把代入②得:,解得.故原方程组的解为.21.(6分)化简并求值:,其中.解:原式;当时,原式.四、解答题:(本大题共4题,满分34分)22.小丽同学共调查了 500 名居民的年龄;(2)扇形统计图中 , (填写百分数),并补全条形统计图;(3)扇形统计图中,表示“年龄在岁的居民”的扇形的圆心角度数是 .解:(1)被调查的居民的总人数:(人;故答案为:500;(2)岁居民所占的百分率:;60岁以上居民所占的百分率:.故答案为:,.岁居民人数为:,条形统计图如下:(3)所求扇形的圆心角度数是:.故答案为:.23.(6分)课余活动中,小杰、小明和小丽一起玩飞镖游戏,飞镖盘上区域所得分值和区域所得分值不同,每人投5次飞镖,其落点如图所示,已知小杰和小明的5次飞镖总分分别为39分和43分,求小丽的5次飞镖总分.解:设区域每次中镖得分,区域每次中镖得分,根据题意得:,解得:,.答:小丽的5次飞镖总分为37分.24.(8分)右图是我区某一路口“右转危险区”的示意图,经过测量后内轮转弯半径米,前内轮转弯半径米,圆心角,求此“右转危险区”的面积和周长.解:由题意可知,米,“右转危险区”的周长米,“右转危险区”的面积六边形的面积平方米.25.(8分)下面是咖啡店老板制作某种奶咖的过程:第一步:在右边圆锥形的杯子中装满咖啡,倒入左边圆柱形杯子中;第二步:再往圆柱形杯子中倒入牛奶,使奶咖的高度是杯子的.问:倒入的牛奶有多少毫升?(得数用含有的式子表示)解:(立方厘米),立方厘米毫升,答:倒入的牛奶有毫升.26.(7分)某地要修建一个如图1所示足球场,足球场的中间是一个长为宽为的长方形、两边为两个半圆形,建设过程中足球场场地要铺上一层厚的石灰土做垫层,如图2,石灰土堆放近似于一个圆锥,底面圆的直径为,高为.取(1)通过计算说明这堆石灰土是否够用?(2)压路机的前轮直径是2米,轮宽是2.5米,前轮每分钟转动2周,若4台压路机同时工作,将的长方形区域压完一次至少需要多少时间?(压路机掉头时间忽略不计,压路时无缝隙、无重叠)(3)计划由甲、乙两个工程队来共同铺设石灰土垫层,已知甲、乙两个工程队每天所铺设的面积之比为,实际铺设时,甲、乙两个工程队一起铺了7天后,乙工程队因故离开,由甲工程队又单独铺了2天,恰好将这足球场的石灰土垫层全部铺完,求甲、乙两个工程队每天各铺多少平方米?解:(1)足球场需要石灰:,石灰有:,,答:这堆石灰土够用.(2)4台压路机每分钟压过的面积为:,(分钟),答:压完一次至少需要50分钟.(3)设甲每天铺平方米,则乙每天铺平方米,足球场的面积为:(平方米),,解得:,甲每天铺:(平方米),乙每天铺:(平方米),答:甲、乙两个工程队每天各铺500平方米、600平方米. 展开更多...... 收起↑ 资源预览