资源简介 2024—2025学年下学期6.已知曲线y=x2_2(a∈R)在x=2处的切线斜率为2,则a=()东北师大附中(数学)科试卷A.-18B.18C.-8D.8高(二)年级期末考试7.若函数f(x)=x3-3mx2+9x+1在(1,+∞)上单调递增,则实数m的取值范围为()考试时长:120分钟试卷总分:120分注意事项:A.(0,-1)B.[-1,1]C.[1,3]D.[-1,3]1.答题前,考生需将自己的姓名、班级、考场/座位号填写在答题卡指定位置上,并粘贴条形码。8.已知函数f(x)=ln(Wx2+1-x)-3x+2(e是自然对数的底数),若f(x-6)+f(x2)>4,2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如则实数x的取值范围是()需改动,用橡皮擦干净后,再选涂其它答案标号。A.(2,+00)B.(-3,2)C.(-00,3)D.(-00,-3)U(2,+0)3.回答非选择题时,请使用0.5毫米黑色字迹签字笔将答案写在答题卡各题目的答题区域内,超出答题区域或在草稿纸、本试题卷上书写的答案无效。二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合4.保持卡面清洁,不要折叠、不要弄皱、弄破,不准使用涂改液、修正带、刮纸刀。题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一9.下列表达式正确的是()个选项是符合题目要求的,A.√a=a8、24B.(-3=1.设全集U={-3,-1,0,1,3},A={-1,0,1,则CA=()279C.log2 3.l0g,2=1D.Ig 2(1g2+1g5)+1g5=1A.{-3,3}B.{-3,0,3C.{-3-1,3}D.{-3-1,0,3}10.已知a>0,b>0,a+2b=2,则()2.已知p:≤0,9≤1,则p是9的()1+2的最小值为2A.a bB.b的最大值为V2A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件C.(2)“+2的最小值为2√2D.a2+b2的最小值为53.下列函数中是偶函数且在区间(0,+0)上单调递增的是()21A.f(x)=xxB.f(x)=x3C.f(x)=x+D.f)=211.函数f(x)是定义域为R的奇函数,当x>0时,f(x)=e(x-1),下列结论正确的有()A.当x<0时,f(x)=e*(x+1)B.方程f(x)=0有3个不等实根4.等比数列{an}中,a=2,a=4,则a,=()C.函数f()有最大值。云1D.x,x2∈R,f(x)-f(x<2A.8B.-8C.16D.-16三、填空题:本题共3小题,每小题5分,共15分.5.设a=205,b=502,c=1og050.3,则a,b,c的大小关系()[2x+1,x<112.已知函数f(x)=A.cB.aC.bD.c.x≥1'则ff(》=东北师大附中高二下学期期末数学试卷第1页(共2页)16.【解析】高二年级数学期末考试参考答案一、单项选择题二、多项选择题(1):lnan,lnan+,lnan+2成等差数列,1234567891011∴.2lnan1=lnan+lnan+2,即an+l2=an·an+2,又an>0,ABBDBCDAC ABD三、填空题∴{an}为等比数列,设其公比为9,12.413.-114.由a3=a92=4,Ja=1,5a2a3=a2q=32(9=2’·0n=2-得:四、解答题(2)bn=an+(-1)”1og2an1=2"-+(-1)1og22”=2”-1+(-1)”n,15.【解析】(1)若f(x)<0的解集为{x1①当n为偶数时由a-4+3=0解得:a=1,由1+b=4=4解得:b=3,b=3:7=1+2+2++2+-1+2)+(-3+4++(-+1+m=2”+22②当n为奇数时(2)不等式f(x)>2x-2x-1整理得ax2-(2a+2)x+4>0,即(ax-2)(x-2)>02T,=1+2+2++2"1+[【(-1+2)+(-3+4)+…+(-n+2+n-D-m=2”_n+3由(ax-2)(x-2)=0得x=二,x2=22an-2①当a>0时,不等式等价于:〔-引:-2列>02"+(n为偶数)综上,T=若2>2即0n+3.(n为奇数)2"-17.【解析】若2=2即a=1时,解集为:(←0,2U(2,+o:者子<2即a>1时,解集为(己U2+(1)依题意,f'(x)=e*+(x-2)e=(x-1)e.由f'(x)>0,得x>1:由f'(x)<0,得0②当a<0时,不等式等价于:(:-x-2)<0,解集为后2)a故函数f(x)的单调增区间是(1,+∞),单调减区间是(0,).综上,当0(2)原方程可化为x(e-ar-)=0,即e-x-1=0.亦即a=e-l当a=1时,解集为:(-o,2)U(2,+o):当a>1时,解集为(-0,)U(2,+o):若原方程在L,+0)有实根,则y=a与g()=-l在(1,o)上有交点当a<0叶,解集为后高二下期末数学参考答案1/3 展开更多...... 收起↑ 资源列表 师大附中高二下期末学生版.pdf 师大附中高二下期末答案.pdf