人教A版高中数学必修第一册第五章三角函数5.2.2同角三角函数的基本关系课件(共30张PPT)

资源下载
  1. 二一教育资源

人教A版高中数学必修第一册第五章三角函数5.2.2同角三角函数的基本关系课件(共30张PPT)

资源简介

(共30张PPT)
人教A版2019必修第一册
第 5章 三角函数
5.2.2 同角三角函数的基本关系
学习目标
1.理解并掌握同角三角函数基本关系式的推导及应用.(重点)
2.会利用同角三角函数的基本关系式进行化简、求值与恒等式证明.(难点)
气象学家洛伦兹1963年提出一种观点:南美洲亚马逊河流域热带雨林中的一只蝴蝶,偶尔扇动几下翅膀,可能在两周后引起美国德克萨斯的一场龙卷风.这就是理论界闻名的“蝴蝶效应”,此效应本意是说事物初始条件的微弱变化可能会引起结果的巨大变化.蝴蝶扇翅膀成为龙卷风的导火索.从中我们还可以看出,南美洲亚马逊河流域热带雨林中的一只蝴蝶与北美德克萨斯的龙卷风看来是毫不相干的两种事物,却会有这样的联系,这也正验证了哲学理论中事物是普遍联系的观点.
情境导入
想一想
既然感觉毫不相干的事物之间都是相互联系的,那么“同一个角”的三角函数之间有没有关系呢?
【提示】有
【探究1】能否根据x,y的关系得到sin α,cos α,tan α的关系
上节课的学习中,我们得到了公式一,即终边相同的角的同一三角函数值相等.
公式一
思考1:那么,终边相同的角的三个三角函数值之间是否也有某种关系呢?
因为三个三角函数值都是由角的终边与单位圆交点所唯一确定的,所以终边相同的角的三个三角函数值一定有内在联系.由公式一可知,我们不妨讨论同一个角的三个三角函数值之间的关系.


课本例题
今后,除特殊注明外,我们假定三角恒等式是在使两边都有意义的情况下的恒等式.
课本练习
题型一:利用同角三角函数的基本关系求值
题型分类讲解
题型二:应用同角三角函数关系式化简与证明
题型三:同角三角函数基本关系式的灵活运用
随堂检测
1.同角三角函数的基本关系
平方关系:
商数关系:
课堂小结
3.已知tanα,求sinα,cosα
2.已知sinα(或cosα)求其它
4.注意分象限讨论
与 联立求解

展开更多......

收起↑

资源预览