6.3梯形的面积(预习衔接.培优卷.含解析)2025-2026学年五年级上册数学人教版

资源下载
  1. 二一教育资源

6.3梯形的面积(预习衔接.培优卷.含解析)2025-2026学年五年级上册数学人教版

资源简介

中小学教育资源及组卷应用平台
预习衔接.培优卷 梯形的面积
1.下面四个图形中,面积最小的是(  )
A.甲 B.乙 C.丙 D.丁
2.一个梯形的上、下底之和是12分米,高是6分米,与它面积相等的平行四边形的底是12分米,高是(  )分米.
A.3 B.6 C.12
3.梯形的面积是42平方厘米,上底是3厘米,下底是7厘米,求它的高,列式是(  )
A.42÷(3+7) B.42÷(3+7﹣3)
C.42×2÷(3+7) D.42÷3÷7
4.在一组平行线间有一些图形(如图)。与左侧三角形面积相等的是(  )
A.① B.② C.③ D.④
5.有一堆圆木如图所示,同学们用不同算式计算圆木的总根数,列式不正确的(  )
A.2+3+4+5+6 B.4×5 C.(2+6)×5 D.(2+6)×5÷2
6.图中,面积最大的是(  )
A.三角形 B.梯形
C.平行四边形
7.如图是用割补法将梯形转化成三角形的探究过程,如果梯形的面积是45平方厘米,高是6cm,那么转化后三角形的底是    cm。
8.东东用割补的方法将梯形转化为三角形来研究,如图就是他探究的过程:
若这个梯形的面积是30cm2,高是5cm,那么转化后三角形的底是    cm。
9.两个完全一样的梯形可以拼成一个平行四边形,这个平行四边形的底等于梯形的    ,高等于梯形的    ,每个梯形的面积等于平行四边形面积的    .因为平行四边形的面积=底×高,所以梯形的面积=   .
10.一块梯形石刻,面积94平方米,它的上底是6.8米,下底13.2米,高    米。
11.一个梯形上底和下底的和是12cm,高是8cm,它的面积是    cm2。
12.把合适的序号填入横线上。
下面的4个平面图形中,   的面积最大,   的面积最小;    与    的面积一样大。
13.一个直角梯形形状的花坛一面靠墙(如图),围花坛的篱笆长65米,这个花坛的面积是多少平方米?
14.计算下面图形的面积。
15.计算如图图形的面积。(单位:cm)
16.民心公园的管理员用240米长的篱笆围了一块等腰梯形的地,并打算在这块地上种牡丹。量得其中一条腰的长度和高如图所示,这块地的面积是多少平方米?
17.一个果园的形状近似梯形,它的上底是1200米,下底是1800米,高是60米,这个果园的占地面积是多少公顷?如果每公顷收水果5吨,可以收水果多少吨?
18.孙大伯家用80米长的竹篱笆在一块靠墙的空地上围了一块菜地(如图),这块菜地的面积是多少平方米?
19.幸福乡修一条240米长的水库大坝,水库大坝的横断面是一个梯形,下底20米,上底12米,高15米。修这条水库大坝需要土石多少方?
20.(1)欢欢在右面的方格图中围了一个梯形,A、B、C是梯形的3个顶点,计算这个梯形面积的算式是(3+5)×3÷2,根据这个算式把梯形画完整。(每个小方格的边长为1cm)
(2)在方格图中画一个与这个梯形面积相等的平行四边形。
21.画出与梯形面积相等的三角形和平行四边形各一个。
22.在如图中的三角形右边,画一个和三角形面积相等的梯形。(梯形的上下底边在平行线上)
23.在如图的方格图中,画出一个和已知梯形面积相同,形状不同的梯形。
预习衔接.培优卷 梯形的面积
参考答案与试题解析
1.下面四个图形中,面积最小的是(  )
A.甲 B.乙 C.丙 D.丁
【考点】梯形的面积;三角形的周长和面积;长方形、正方形的面积;平行四边形的面积.
【答案】D
【分析】根据梯形的面积公式:S=(a+b)h÷2,三角形的面积公式:S=ah÷2,平行四边形的面积公式:S=ah,长方形的面积公式:S=ab,设高为h厘米,把数据代入公式分别求出高图形的解决,然后据此比较即可。
【解答】解:设高为h厘米。
梯形的面积:(2+4)h÷2=3h(平方厘米)
三角形的面积:5h÷2=2.5h(平方厘米)
平行四边形的面积:3h(平方厘米)
长方形的面积:2h(平方厘米)
3h>2.5h>2h
答:面积最小的是长方形。
故选:D。
【点评】此题主要考查梯形、三角形、平行四边形、长方形面积公式的灵活运用,关键是熟记公式。
2.一个梯形的上、下底之和是12分米,高是6分米,与它面积相等的平行四边形的底是12分米,高是(  )分米.
A.3 B.6 C.12
【考点】梯形的面积;平行四边形的面积.
【答案】A
【分析】先根据梯形的面积=上下底的和×高÷2求出这个梯形的面积,也就是平行四边形的面积,再根据平行四边形的面积=底×高可知,平行四边形的高=面积÷底,由此代入数据计算即可.
【解答】解:12×6÷2÷12
=36÷12
=3(分米)
答:高是3分米.
故选:A.
【点评】本题考查了梯形、平行四边形面积公式的灵活运用.
3.梯形的面积是42平方厘米,上底是3厘米,下底是7厘米,求它的高,列式是(  )
A.42÷(3+7) B.42÷(3+7﹣3)
C.42×2÷(3+7) D.42÷3÷7
【考点】梯形的面积.
【答案】C
【分析】利用梯形面积公式:S=(a+b)h÷2的变形,计算梯形的高即可。
【解答】解:42×2÷(3+7)
=84÷10
=8.4(厘米)
答:梯形的高是8.4厘米。
列式正确的是42×2÷(3+7)。
故选:C。
【点评】本题主要考查梯形面积公式的应用。
4.在一组平行线间有一些图形(如图)。与左侧三角形面积相等的是(  )
A.① B.② C.③ D.④
【考点】梯形的面积;三角形的周长和面积;平行四边形的面积.
【答案】D
【分析】根据平行四边形的面积公式:S=ah,三角形的面积公式:S=ah÷2,及梯形的面积公式:S=(a+b)×h÷2进行解答。
【解答】解:因为夹在两平行线之间的距离相等,所以这几个图形的高是相等的,可设为h cm,
左侧三角形面积是h cm2,
①的面积是1.5h cm2,
②的面积是2h cm2,
③的面积大于h cm2,
④的面积是h cm2。
故选:D。
【点评】本题主要考查了学生对平行四边形、三角形和梯形面积公式的掌握。
5.有一堆圆木如图所示,同学们用不同算式计算圆木的总根数,列式不正确的(  )
A.2+3+4+5+6 B.4×5 C.(2+6)×5 D.(2+6)×5÷2
【考点】梯形的面积.
【答案】C
【分析】结合这堆圆木的图示,逐一分析各个选项即可得出答案。
【解答】解:A、将每层圆木的根数相加即可求出圆木总根数,列式为:2+3+4+5+6,所以选项A正确;
B、将圆木最多一层的6根移到最少那层2根,将圆木5根那层移到3根那层1根,则平均每层是4根,一共有5层,圆木总根数为:4×5,所以选项B正确;
C、利用堆成梯形的物品的计算方法:根数=(顶层根数+底层根数)×层数÷2,列式为:(2+6)×5÷2,所以选项C错误;
D:利用堆成梯形的物品的计算方法:根数=(顶层根数+底层根数)×层数÷2,列式为:(2+6)×5÷2,所以选项D正确。
故选:C。
【点评】此题主要考查梯形面积公式的灵活运用,关键是熟记公式。
6.图中,面积最大的是(  )
A.三角形 B.梯形
C.平行四边形
【考点】梯形的面积;三角形的周长和面积;平行四边形的面积.
【答案】C
【分析】根据平行四边形的面积公式:S=ah,三角形的面积公式:S=ah÷2,梯形的面积公式:S=(a+b)h÷2,把数据代入公式分别求出各图形的面积,然后进行比较即可。
【解答】解:设它们的高为h厘米。
平行四边形的面积是3h平方厘米;
三角形的面积是3h÷2=1.5h(平方厘米);
1.5h平方厘米<梯形的面积<3h平方厘米;
面积最大的是平行四边形。
故选:C。
【点评】此题主要考查平行四边形、三角形、梯形面积公式的灵活运用,关键是熟记公式。
7.如图是用割补法将梯形转化成三角形的探究过程,如果梯形的面积是45平方厘米,高是6cm,那么转化后三角形的底是  15 cm。
【考点】梯形的面积.
【答案】15。
【分析】根据梯形的面积=(上底+下底)×高÷2,求出上底与下底的和即可。
【解答】解:45×2÷6
=90÷6
=15(厘米)
答:转化后三角形的底是15cm。
故答案为:15。
【点评】熟练掌握梯形的面积公式,是解答此题的关键。
8.东东用割补的方法将梯形转化为三角形来研究,如图就是他探究的过程:
若这个梯形的面积是30cm2,高是5cm,那么转化后三角形的底是  12 cm。
【考点】梯形的面积.
【答案】12。
【分析】由题意可知,梯形与三角形是面积相等,高相等,要求转化后三角形的底是多少厘米,根据三角形的底=面积×2÷高解答即可。
【解答】解:30×2÷5
=60÷5
=12(厘米)
答:转化后三角形的底是12厘米。
故答案为:12。
【点评】解决本题关键是找清楚转化过程中图形的高不变,再根据三角形的面积公式求解。
9.两个完全一样的梯形可以拼成一个平行四边形,这个平行四边形的底等于梯形的  上下底的和 ,高等于梯形的  高 ,每个梯形的面积等于平行四边形面积的  一半 .因为平行四边形的面积=底×高,所以梯形的面积= (上底+下底)×高÷2 .
【考点】梯形的面积.
【答案】见试题解答内容
【分析】根据梯形面积公式的推导过程进行解答.
【解答】解:两个完全一样的梯形可以拼成一个平行四边形,这个平行四边形的底等于梯形的上下底的和,高等于梯形的高,每个梯形的面积等于平行四边形面积的一半.因为平行四边形的面积=底×高,所以梯形的面积=(上底+下底)×高÷2.
故答案为:上下底的和,高,一半,(上底+下底)×高÷2.
【点评】本题主要考查了学生对梯形面积公式推导过程的掌握.
10.一块梯形石刻,面积94平方米,它的上底是6.8米,下底13.2米,高  9.4 米。
【考点】梯形的面积.
【答案】9.4。
【分析】根据梯形的面积=(上底+下底)×高÷2,则高=梯形面积×2÷(上底+下底),代入数值即可解答。
【解答】解:94×2÷(6.8+13.2)
=188÷20
=9.4(米)
答:高9.4米。
故答案为:9.4。
【点评】此题主要考查的是梯形的面积公式在实际生活中的应用。
11.一个梯形上底和下底的和是12cm,高是8cm,它的面积是  48 cm2。
【考点】梯形的面积.
【答案】48。
【分析】根据梯形面积=(上底+下底)×高÷2,即可解答。
【解答】解:12×8÷2
=96÷2
=48(cm2)
答:它的面积是48cm2。
故答案为:48。
【点评】本题考查的是梯形面积的计算,熟记公式是解答关键。
12.把合适的序号填入横线上。
下面的4个平面图形中, ② 的面积最大, ① 的面积最小;  ③ 与  ④ 的面积一样大。
【考点】梯形的面积;三角形的周长和面积;面积的认识;平行四边形的面积.
【答案】②;①;③;④。
【分析】根据题意可知,四个图形的高度是相等的,然后根据长方形面积=长×宽、平行四边形面积=底×高、梯形面积=(上底+下底)×高÷2,三角形面积=底×高÷2,据此判断即可。
【解答】解:根据题意,设四个图形的高是h。
①面积是3h;
②面积是5h;
③面积是(6+2)×h÷2=4h;
④面积是8h÷2=4h。
下面的4个平面图形中,②面积最大,①的面积最小; ③与④的面积一样大。
故答案为:②;①;③;④。
【点评】此题考查的是长方形、平行四边形、梯形和三角形的面积公式。
13.一个直角梯形形状的花坛一面靠墙(如图),围花坛的篱笆长65米,这个花坛的面积是多少平方米?
【考点】梯形的面积.
【答案】见试题解答内容
【分析】这个花坛是一个梯形,梯形的上下底的和,再加上高就是篱笆的长度,所以用篱笆的长度减去这个梯形的高,就是上下底的和,再根据梯形的面积=(上底+下底)×高÷2求解即可.
【解答】解:(65﹣20)×20÷2
=45×20÷2
=900÷2
=450(平方米)
答:这个花坛的面积是450平方米.
【点评】解决本题关键是根据图确定出梯形上下底的和,再灵活运用梯形的面积公式求解.
14.计算下面图形的面积。
【考点】梯形的面积.
【答案】54平方厘米。
【分析】根据梯形的面积=(上底+下底)×高÷2,求出面积即可。
【解答】解:(10+8)×6÷2
=18×6÷2
=54(平方厘米)
答:梯形的面积是54平方厘米。
【点评】熟练掌握梯形的面积公式,是解答此题的关键。
15.计算如图图形的面积。(单位:cm)
【考点】梯形的面积;三角形的周长和面积;平行四边形的面积.
【答案】(1)27平方厘米;(2)450平方厘米;(3)64平方厘米。
【分析】(1)根据三角形面积公式:面积=底×高÷2,代入数据,求出三角形面积;
(2)根据平行四边形面积公式:面积=底×高,代入数据,求出平行四边形面积;
(3)根据梯形面积公式:面积=(上底+下底)×高÷2,代入数据,求出梯形面积。
【解答】解:(1)12×4.5÷2
=54÷2
=27(平方厘米)
答:三角形面积是27平方厘米。
(2)30×15=450(平方厘米)
答:平行四边形面积是450平方厘米。
(3)(10.6+5.4)×8÷2
=16×8÷2
=128÷2
=64(平方厘米)
答:梯形的面积是64平方厘米。
【点评】解答此题要运用三角形、平行四边形和梯形的面积公式。
16.民心公园的管理员用240米长的篱笆围了一块等腰梯形的地,并打算在这块地上种牡丹。量得其中一条腰的长度和高如图所示,这块地的面积是多少平方米?
【考点】梯形的面积.
【答案】2800平方米。
【分析】根据题意可知,240米是等腰梯形的周长,用240减去两条腰的长度,求出梯形上底与下底的和,再根据梯形的面积公式:梯形面积=(上底+下底)×高÷2,代入数据即可解答。
【解答】解:(240﹣50﹣50)×40÷2
=140×40÷2
=5600÷2
=2800(平方米)
答:这块地的面积是2800平方米。
【点评】本题主要是利用梯形的面积公式S=(a+b)×h÷2解决问题。
17.一个果园的形状近似梯形,它的上底是1200米,下底是1800米,高是60米,这个果园的占地面积是多少公顷?如果每公顷收水果5吨,可以收水果多少吨?
【考点】梯形的面积;大面积单位间的进率及单位换算.
【答案】9公顷,45吨。
【分析】根据梯形面积=(上底+下底)×高÷2,求出这个果园的占地面积,再乘5,即可解答。
【解答】解:(1200+1800)×60÷2
=180000÷2
=90000(平方米)
90000平方米=9公顷
5×9=45(吨)
答:这个果园的占地面积是9公顷,可以收水果45吨。
【点评】本题考查的是梯形面积的计算,熟记公式是解答关键。
18.孙大伯家用80米长的竹篱笆在一块靠墙的空地上围了一块菜地(如图),这块菜地的面积是多少平方米?
【考点】梯形的面积.
【答案】750平方米。
【分析】用80减去30,求出上底和下底的和,再根据梯形面积=(上底+下底)×高÷2,即可解答。
【解答】解:(80﹣30)×30÷2
=50×30÷2
=1500÷2
=750(平方米)
答:这块菜地的面积是750平方米。
【点评】本题考查的是梯形面积的计算,熟记公式是解答关键。
19.幸福乡修一条240米长的水库大坝,水库大坝的横断面是一个梯形,下底20米,上底12米,高15米。修这条水库大坝需要土石多少方?
【考点】梯形的面积.
【答案】57600方。
【分析】根据梯形的面积公式先算出梯形的面积,然后再乘240米即可。
【解答】解:(12+20)×15÷2×240
=32×15÷2×240
=480÷2×240
=240×240
=57600(方)
答:修这条水库大坝需要土石57600方。
【点评】熟练掌握梯形的面积公式,是解答此题的关键。
20.(1)欢欢在右面的方格图中围了一个梯形,A、B、C是梯形的3个顶点,计算这个梯形面积的算式是(3+5)×3÷2,根据这个算式把梯形画完整。(每个小方格的边长为1cm)
(2)在方格图中画一个与这个梯形面积相等的平行四边形。
【考点】梯形的面积;平行四边形的面积.
【答案】(1)如图:
(2)图如:画法不唯一。
(1)欢欢在右面的方格图中围了一个梯形,
【分析】(1)根据梯形的面积公式:S=(a+b)h÷2,由算式(3+5)×3÷2可知,这个梯形的上底是3厘米,根据梯形的画法,画出这个梯形。
(2)根据平行四边形的面积公式:S=ah,要使所画平行四边形的面积与梯形的面积相等,可以画一个底是4厘米,高是3厘米的平行四边形。
【解答】解:(1)(3+5)×3÷2
=8×3÷2
=24÷2
=12(平方厘米)
作图如下:
(2)画法不唯一。可以画一个底是4厘米,高是3厘米的平行四边形。
作图如下:
【点评】此题主要考查梯形、平行四边形面积公式的灵活运用,梯形、平行四边形的画法及应用。
21.画出与梯形面积相等的三角形和平行四边形各一个。
【考点】梯形的面积;三角形的周长和面积;平行四边形的面积.
【答案】(画法不唯一)。
【分析】利用梯形面积公式:S=(a+b)h÷2计算梯形的面积,再根据三角形面积公式:S=ah÷2,平行四边形面积公式:S=ah,找到符合题意的三角形和平行四边形的底和高,作图即可。
【解答】解:(3+5)×2÷2
=8×2÷2
=8
8=4×4÷2=2×4
所以画底4、高4的三角形和底4、高2 的平行四边形的面积与梯形面积相等,如图:
(画法不唯一)
【点评】本题主要考查梯形、三角形和平行四边形面积公式的应用。
22.在如图中的三角形右边,画一个和三角形面积相等的梯形。(梯形的上下底边在平行线上)
【考点】梯形的面积;三角形的周长和面积.
【答案】
【分析】因为所画的梯形和三角形面积相等,且等高,三角形的底是7格,从而得到梯形的上底与下底的和是7格,可以取梯形的上底是2格,下底是5格;由此画出即可。
【解答】解:根据分析、作图如下:
【点评】此题主要考查三角形、梯形的面积公式,关键是明确梯形的上底与下底的和是7格。
23.在如图的方格图中,画出一个和已知梯形面积相同,形状不同的梯形。
【考点】梯形的面积.
【答案】画法不唯一。
【分析】根据梯形的面积公式:S=(a+b)h÷2,把数据代入公式求出已知梯形的面积,然后根据梯形的画法作图即可。
【解答】解:(5+2)×4÷2
=7×4÷2
=28÷2
=14
作图如下:(画法不唯一)
【点评】此题主要考查梯形面积公式的灵活运用,梯形的画法及应用。
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)

展开更多......

收起↑

资源预览