资源简介 中小学教育资源及组卷应用平台5.1.2 等式的性质一、单选题1.(2024七上·巨野期末)下列运用等式性质进行的变形,正确的是( )A.如果,那么 B.如果,那么C.如果,那么 D.如果,那么2.(2024七上·合肥新站高新技术产业开发期末)已知,下列变形中不一定正确的是( )A. B.C. D.3.能运用等式的性质说明如图事实的是( )A.如果,那么(a,b,c均不为0)B.如果,那么(a,b,c均不为0)C.如果,那么(a,b,c均不为0)D.如果,那么(a,b,c均不为0)4.(2025七上·防城港期末)下列运用等式的性质变形正确的是( ).A.若,则 B.若,则C.若,则 D.若,则5.(2023七上·南岗月考)若a=b,那么下列各式不一定成立的是( )A. B.C.3a﹣1=3b﹣1 D.6.运用等式性质进行的变形,不正确的是( )A.如果那么 B.如果那么C.如果那么 D.如果那么7.(2024七上·新邵期末)根据等式的基本性质,下列式子变形错误的是( )A.如果,那么 B.如果,那么C.如果,那么 D.如果,那么8.(2023七上·吉林期中)下列运用等式的性质,变形不正确的是( )A.若x=y,则x+5=y+5 B.若x=y,则C.若x=y,则1﹣3x=1﹣3y D.若a=b,则ac=bc9.下列方程的变形正确的个数有( )( 1 )由3+x=5,得x=5+3;(2)由7x=﹣4,得x=﹣ ;(3)由 y=0得y=2;(4)由3=x﹣2得x=﹣2﹣3.A.1个 B.2个 C.3个 D.4个10.下列判断错误的是( )A.若a=b,则ac-3=bc-3 B.若a=b,则C.若x=2,则x2=2x D.若ax=bx,则a=b二、填空题11.(2023七下·绥宁期中)已知方程 ,用含 的代数式表示 为: .12.(2024七下·哈尔滨月考)把方程改写成用含x的式子表示y的形式,则 .13.(2023七上·岳麓月考)将方程变形为用含的式子表示,那么 .14.(2020七上·南召期末)计算: .15.如果2x-5=6,那么2x= ,其依据是 .三、计算题16.(2024六上·博兴期末)解方程(1)(2)(3)17.列等式:比a大3的数是8;四、解答题18. 等式 能变形成4a=3b吗 若能,请说出每一步的变形过程及其依据。19. 已知x+3=1,下列等式成立吗 依据是什么 (1)3=1-x;(2)-2(x+3)=-2;(3)(4)x=1-3。20. 公式变形: 在物理公式 中, 请用 表示 .21.(2023七上·丰顺月考)设a,b,c为整数,且对一切实数都有(x-a)(x -8)+1=(x-b)(x-c)恒成立.求a+b+c的值.答案解析部分1.【答案】B【知识点】等式的基本性质2.【答案】D【知识点】等式的基本性质3.【答案】A【知识点】等式的基本性质4.【答案】D【知识点】等式的基本性质5.【答案】D【知识点】等式的基本性质6.【答案】A【知识点】等式的基本性质7.【答案】C【知识点】等式的基本性质8.【答案】B【知识点】等式的基本性质9.【答案】A【知识点】等式的基本性质10.【答案】D【知识点】等式的基本性质11.【答案】【知识点】等式的基本性质12.【答案】【知识点】等式的基本性质13.【答案】【知识点】等式的基本性质14.【答案】【知识点】整式的加减运算;等式的基本性质15.【答案】11;等式性质①【知识点】等式的基本性质16.【答案】(1)(2)(3)【知识点】等式的基本性质17.【答案】解:a+3=8;【知识点】等式的基本性质18.【答案】解:等式两边加上根据等式的性质1,等式两边同时加上,得到:根据等式的性质2,等式两边同时乘以12(3和4的最小公倍数),得到:化简后为:.【知识点】利用等式的性质将等式变形19.【答案】(1)解:原式为,根据等式基本性质1,两边同时减去,得,∴等式(1)成立。(2)解:根据等式基本性质2,两边同时乘以,得,即,∴等式(2)成立。(3)解:根据等式基本性质2,两边同时除以3(即乘以),得,∴等式(3)成立。(4)解:原式为,根据等式基本性质1,两边同时减去3,得,∴等式(4)成立。【知识点】等式的基本性质20.【答案】解: ,【知识点】利用等式的性质将等式变形21.【答案】解:∵(x﹣a)(x﹣8)+1=x2﹣(a+8)x+8a+1,(x﹣b)(x﹣c)=x2﹣(b+c)x+bc又∵(x﹣a)(x﹣8)+1=(x﹣b)(x﹣c)恒成立,∴﹣(a+8)=﹣(b+c),∴8a+1=bc,消去a得:bc﹣8(b+c)=﹣63,(b﹣8)(c﹣8)=1,∵b,c都是整数,故b﹣8=1,c﹣8=1或b﹣8=﹣1,c﹣8=﹣1,解得b=c=9或b=c=7,当b=c=9时,解得a=10,当b=c=7时,解得a=6,故a+b+c=9+9+10=28或7+7+6=20,故答案为:20或28.【知识点】等式的基本性质;多项式的项、系数与次数21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)21世纪教育网(www.21cnjy.com) 展开更多...... 收起↑ 资源预览