资源简介 7.4.2 超几何分布(强基课梯度进阶式教学)课时目标1.通过具体实例,了解超几何分布及其均值.2.能用超几何分布解决简单的实际问题. 1.超几何分布的概念一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)= ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M}.如果随机变量X的分布列具有上式的形式,那么称随机变量X服从超几何分布. 微点助解(1)在超几何分布的模型中,“任取n件”应理解为“不放回地一次取一件,连续取n件”.(2)超几何分布的特点:①不放回抽样;②考察对象分两类;③实质是古典概型.2.超几何分布的均值一般地,当随机变量X服从参数为N,M,n的超几何分布时,其均值为E(X)=.[基点训练]1.[多选]下列随机变量中,服从超几何分布的有 ( )A.在10件产品中有3件次品,一件一件地不放回地任意取出4件,记取到的次品数为XB.从3台甲型冰箱和2台乙型冰箱中任取2台,记X表示所取的2台冰箱中甲型冰箱的台数C.一名学生骑自行车上学,途中有6个交通岗,记此学生遇到红灯的个数为随机变量XD.从10名男生、5名女生中选3人参加植树活动,其中男生人数记为X2.已知8名学生中有5名男生,从中选出4名代表,记选出的代表中男生人数为X,则P(X=3)= ( )A. B.C. D.13.设50个产品中有10个次品,任取产品20个,取到的次品可能有X个,则E(X)= ( )A.4 B.3C.2 D.14.袋中有3个红球,7个白球,这些球除颜色不同外其余完全相同,从中无放回地任取5个,取出几个红球就得几分,则平均得 分. 题型(一) 超几何分布的概念[例1] [多选]下列随机事件中的随机变量X不服从超几何分布的是 ( )A.将一枚硬币连抛3次,正面向上的次数XB.从7名男生与3名女生共10名学生干部中选出5名优秀学生干部,选出女生的人数为XC.某射手的命中率为0.8,现对目标射击1次,记命中目标的次数为XD.盒中有4个白球和3个黑球,每次从中摸出1球且不放回,X是首次摸出黑球时的总次数听课记录:[思维建模]判断一个随机变量是否服从超几何分布,应看三点(1)总体是否可分为两类明确的对象(多类对象可转化为两类对象).(2)是否为不放回抽样.(3)随机变量是否为样本中其中一类个体的个数. [针对训练]1.[多选]下列随机变量中,服从超几何分布的有 ( )A.抛掷三枚骰子,向上的点数是6的骰子的个数XB.有一批种子的发芽率为70%,任取10颗种子做发芽试验,试验中发芽的种子的个数XC.盒子中有3个红球、4个黄球、5个蓝球,任取3个球,不是红球的个数XD.某班级有男生25人,女生20人.选派4名学生参加学校组织的活动,其中女生的人数X题型(二) 超几何分布的概率[例2] 某校高一、高二的学生组队参加辩论赛,高一推荐了3名男生、2名女生,高二推荐了3名男生、4名女生.推荐的学生一起参加集训,最终从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队.(1)求高一至少有1名学生入选代表队的概率;(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X表示参赛的男生人数,求X的分布列.听课记录:[思维建模](1)在产品抽样检验中,如果采用的是不放回抽样,则抽到的次品数服从超几何分布.(2)如果随机变量X服从超几何分布,只需代入公式即可求得相应概率,关键是明确随机变量X的所有取值. [针对训练]2.老师要从10篇课文中随机抽3篇不同的课文让同学背诵,规定至少要背出其中2篇才能及格.某位同学只能背诵其中的6篇,求:(1)抽到他能背诵的课文的数量的分布列;(2)他能及格的概率.题型(三) 超几何分布的实际应用[例3] 某种水果按照果径大小可分为四类:标准果、优质果、精品果、礼品果.某采购商从采购的一批水果中随机抽取100个,利用水果的等级分类标准得到的数据如下:等级 标准果 优质果 精品果 礼品果个数 10 30 40 20(1)用样本估计总体,果园老板提出两种购销方案给采购商参考:方案1:不分类卖出,单价为20元/kg.方案2:分类卖出,分类后的水果售价如下表:等级 标准果 优质果 精品果 礼品果售价(元/kg) 16 18 22 24从采购商的角度考虑,应该采用哪种方案较好 并说明理由.(2)从这100个水果中用分层随机抽样的方法抽取10个,再从抽取的10个水果中随机抽取3个,X表示抽取到精品果的数量,求X的分布列及均值E(X).听课记录:[思维建模]求超几何分布均值的步骤(1)验证随机变量服从超几何分布,并确定参数N,M,n的值.(2)利用超几何分布的均值公式求解. [针对训练]3.一袋中装有50个白球,45个黑球,5个红球,现从中随机抽取20个球,则取出的红球个数ξ的数学期望为 . 4.某学校共有1 000名学生,其中男生400人,为了解该校学生在学校的月消费情况,采取分层随机抽样的方法随机抽取了100名学生进行调查,月消费金额分布在450~950之间.根据调查的结果绘制的学生在校月消费金额的频率分布直方图如图所示,将月消费金额不低于750元的学生称为“高消费群”.(1)求a的值;(2)现采用分层随机抽样的方式从月消费金额落在[550,650),[750,850)内的两组学生中抽取10人,再从这10人中随机抽取3人,记被抽取的3名学生中属于“高消费群”的学生人数为随机变量X,求X的分布列及数学期望.7.4.2 超几何分布 课前环节1.[基点训练]1.选ABD 依据超几何分布定义可知,A、B、D中随机变量X服从超几何分布.而C中显然不能看作一个不放回抽样问题,故随机变量X不服从超几何分布.2.选B X=3表示选出的4个代表中有3个男生1个女生,则P(X=3)==.3.选A 由题意,得E(X)==4,故选A.4.解析:用X表示所得分数,则X也是取得的红球数,X服从超几何分布,于是E(X)=n·=5×=1.5(分).答案:1.5 课堂环节[题型(一)][例1] 选ACD 由超几何分布的定义可知仅B是超几何分布,故选ACD.[针对训练]1.选CD A、B是伯努利试验问题,服从二项分布,不服从超几何分布,故A、B不符合题意;C、D符合超几何分布的特征,样本都可分为两类,随机变量X表示抽取n件样本中某类样本被抽取的件数,服从超几何分布.[题型(二)][例2] 解:(1)高一、高二共推荐6名男生和6名女生,高一没有学生入选代表队的概率为==,所以高一至少有1名学生入选代表队的概率为1-=.(2)根据题意知,X的所有可能取值为1,2,3.P(X=1)==,P(X=2)==,P(X=3)==,所以X的分布列为X 1 2 3P[针对训练]2.解:(1)设该同学抽到能背诵的课文篇数为X,X的可能取值为0,1,2,3,则X的分布列为P(X=k)=,k=0,1,2,3,用表格表示为X 0 1 2 3P(2)及格的概率为P(X≥2)=P(X=2)+P(X=3)=+=.[题型(三)][例3] 解:(1)角度一:设方案2的单价为ξ,则单价的均值为E(ξ)=16×+18×+22×+24×=20.6(元).因为E(ξ)>20,所以从采购商的采购资金成本角度考虑,采取方案1比较好.角度二:设方案2的单价为ξ,则单价的均值为E(ξ)=16×+18×+22×+24×=20.6(元),虽然E(ξ)>20,E(ξ)-20=0.6,但从采购商后期对水果分类的人力资源和时间成本角度考虑,采取方案2较好.(2)用分层随机抽样的方法从100个水果中抽取10个,则其中精品果4个,非精品果6个.现从中抽取3个,则精品果的数量X服从超几何分布,X所有可能的取值为0,1,2,3.则P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,所以X的分布列为X 0 1 2 3PE(X)=0×+1×+2×+3×=.[针对训练]3.解析:袋中球的总数为50+45+5=100,根据题意可知,随机抽取的20个球中红球的个数ξ服从超几何分布.因为N=100,M=5,n=20,所以E(ξ)===1.答案:14.解:(1)由题意知100×(0.001 5+a+0.002 5+0.001 5+0.001)=1,解得a=0.003 5.(2)由题意,从[550,650)中抽取7人,从[750,850)中抽取3人.随机变量X的所有可能取值为0,1,2,3,P(X=k)=(k=0,1,2,3),所以随机变量X的分布列为X 0 1 2 3P所以随机变量X的数学期望E(X)=0×+1×+2×+3×=.3 / 3(共67张PPT)7.4.2 超几何分布(强基课——梯度进阶式教学)课时目标1.通过具体实例,了解超几何分布及其均值.2.能用超几何分布解决简单的实际问题. CONTENTS目录123课前环节/预知教材·自主落实主干基础课堂环节/题点研究·迁移应用融会贯通课时跟踪检测课前环节/预知教材·自主落实主干基础1.超几何分布的概念一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=________,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M}.如果随机变量X的分布列具有上式的形式,那么称随机变量X服从超几何分布.微点助解(1)在超几何分布的模型中,“任取n件”应理解为“不放回地一次取一件,连续取n件”.(2)超几何分布的特点:①不放回抽样;②考察对象分两类;③实质是古典概型.2.超几何分布的均值一般地,当随机变量X服从参数为N,M,n的超几何分布时,其均值为E(X)=.基点训练1.[多选]下列随机变量中,服从超几何分布的有 ( )A.在10件产品中有3件次品,一件一件地不放回地任意取出4件,记取到的次品数为XB.从3台甲型冰箱和2台乙型冰箱中任取2台,记X表示所取的2台冰箱中甲型冰箱的台数C.一名学生骑自行车上学,途中有6个交通岗,记此学生遇到红灯的个数为随机变量XD.从10名男生、5名女生中选3人参加植树活动,其中男生人数记为X√√√解析:依据超几何分布定义可知,A、B、D中随机变量X服从超几何分布.而C中显然不能看作一个不放回抽样问题,故随机变量X不服从超几何分布.2.已知8名学生中有5名男生,从中选出4名代表,记选出的代表中男生人数为X,则P(X=3)= ( )A.B. C. D.1解析:X=3表示选出的4个代表中有3个男生1个女生,则P(X=3)==.√3.设50个产品中有10个次品,任取产品20个,取到的次品可能有X个,则E(X)= ( )A.4 B.3C.2 D.1解析:由题意,得E(X)==4,故选A.√4.袋中有3个红球,7个白球,这些球除颜色不同外其余完全相同,从中无放回地任取5个,取出几个红球就得几分,则平均得_____分. 解析:用X表示所得分数,则X也是取得的红球数,X服从超几何分布,于是E(X)=n·=5×=1.5(分).1.5课堂环节/题点研究·迁移应用融会贯通题型(一) 超几何分布的概念[例1] [多选]下列随机事件中的随机变量X不服从超几何分布的是 ( )A.将一枚硬币连抛3次,正面向上的次数XB.从7名男生与3名女生共10名学生干部中选出5名优秀学生干部,选出女生的人数为XC.某射手的命中率为0.8,现对目标射击1次,记命中目标的次数为XD.盒中有4个白球和3个黑球,每次从中摸出1球且不放回,X是首次摸出黑球时的总次数解析:由超几何分布的定义可知仅B是超几何分布,故选ACD.√√√[思维建模]判断一个随机变量是否服从超几何分布,应看三点(1)总体是否可分为两类明确的对象(多类对象可转化为两类对象).(2)是否为不放回抽样.(3)随机变量是否为样本中其中一类个体的个数.针对训练1.[多选]下列随机变量中,服从超几何分布的有 ( )A.抛掷三枚骰子,向上的点数是6的骰子的个数XB.有一批种子的发芽率为70%,任取10颗种子做发芽试验,试验中发芽的种子的个数XC.盒子中有3个红球、4个黄球、5个蓝球,任取3个球,不是红球的个数XD.某班级有男生25人,女生20人.选派4名学生参加学校组织的活动,其中女生的人数X√√解析:A、B是伯努利试验问题,服从二项分布,不服从超几何分布,故A、B不符合题意;C、D符合超几何分布的特征,样本都可分为两类,随机变量X表示抽取n件样本中某类样本被抽取的件数,服从超几何分布.题型(二) 超几何分布的概率[例2] 某校高一、高二的学生组队参加辩论赛,高一推荐了3名男生、2名女生,高二推荐了3名男生、4名女生.推荐的学生一起参加集训,最终从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队.(1)求高一至少有1名学生入选代表队的概率;解:高一、高二共推荐6名男生和6名女生,高一没有学生入选代表队的概率为==,所以高一至少有1名学生入选代表队的概率为1-=.(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X表示参赛的男生人数,求X的分布列.解:根据题意知,X的所有可能取值为1,2,3.P(X=1)==,P(X=2)==,P(X=3)==,所以X的分布列为X 1 2 3P[思维建模](1)在产品抽样检验中,如果采用的是不放回抽样,则抽到的次品数服从超几何分布.(2)如果随机变量X服从超几何分布,只需代入公式即可求得相应概率,关键是明确随机变量X的所有取值.针对训练2.老师要从10篇课文中随机抽3篇不同的课文让同学背诵,规定至少要背出其中2篇才能及格.某位同学只能背诵其中的6篇,求:(1)抽到他能背诵的课文的数量的分布列;解:设该同学抽到能背诵的课文篇数为X,X的可能取值为0,1,2,3,则X的分布列为P(X=k)=,k=0,1,2,3,用表格表示为X 0 1 2 3P(2)他能及格的概率.解:及格的概率为P(X≥2)=P(X=2)+P(X=3)=+=.题型(三) 超几何分布的实际应用[例3] 某种水果按照果径大小可分为四类:标准果、优质果、精品果、礼品果.某采购商从采购的一批水果中随机抽取100个,利用水果的等级分类标准得到的数据如下:等级 标准果 优质果 精品果 礼品果个数 10 30 40 20(1)用样本估计总体,果园老板提出两种购销方案给采购商参考:方案1:不分类卖出,单价为20元/kg.方案2:分类卖出,分类后的水果售价如下表:等级 标准果 优质果 精品果 礼品果售价(元/kg) 16 18 22 24从采购商的角度考虑,应该采用哪种方案较好 并说明理由.解:角度一:设方案2的单价为ξ,则单价的均值为E(ξ)=16×+18×+22×+24×=20.6(元).因为E(ξ )>20,所以从采购商的采购资金成本角度考虑,采取方案1比较好.角度二:设方案2的单价为ξ,则单价的均值为E(ξ)=16×+18×+22×+24×=20.6(元),虽然E(ξ )>20,E(ξ)-20=0.6,但从采购商后期对水果分类的人力资源和时间成本角度考虑,采取方案2较好.(2)从这100个水果中用分层随机抽样的方法抽取10个,再从抽取的10个水果中随机抽取3个,X表示抽取到精品果的数量,求X的分布列及均值E(X).解:用分层随机抽样的方法从100个水果中抽取10个,则其中精品果4个,非精品果6个.现从中抽取3个,则精品果的数量X服从超几何分布,X所有可能的取值为0,1,2,3.则P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,所以X的分布列为X 0 1 2 3PE(X)=0×+1×+2×+3×=.[思维建模]求超几何分布均值的步骤(1)验证随机变量服从超几何分布,并确定参数N,M,n的值.(2)利用超几何分布的均值公式求解. 针对训练3.一袋中装有50个白球,45个黑球,5个红球,现从中随机抽取20个球,则取出的红球个数ξ 的数学期望为____. 解析:袋中球的总数为50+45+5=100,根据题意可知,随机抽取的20个球中红球的个数ξ 服从超几何分布.因为N=100,M=5,n=20,所以E(ξ )===1.14.某学校共有1 000名学生,其中男生400人,为了解该校学生在学校的月消费情况,采取分层随机抽样的方法随机抽取了100名学生进行调查,月消费金额分布在450~950之间.根据调查的结果绘制的学生在校月消费金额的频率分布直方图如图所示,将月消费金额不低于750元的学生称为“高消费群”.(1)求a的值;解:由题意知100×(0.001 5+a+0.002 5+0.001 5+0.001)=1,解得a=0.003 5.(2)现采用分层随机抽样的方式从月消费金额落在[550,650),[750,850)内的两组学生中抽取10人,再从这10人中随机抽取3人,记被抽取的3名学生中属于“高消费群”的学生人数为随机变量X,求X的分布列及数学期望.解:由题意,从[550,650)中抽取7人,从[750,850)中抽取3人.随机变量X的所有可能取值为0,1,2,3,P(X=k)=(k=0,1,2,3),所以随机变量X的分布列为X 0 1 2 3P所以随机变量X的数学期望E(X)=0×+1×+2×+3×=.课时跟踪检测1345678910111213142A级——综合提能1.设10件同类型的零件中有2件是不合格品,从其中任取3件,以X表示取出的3件中的不合格品的件数,则P(X=1)=( )A.B. C. D.解析:根据超几何分布的概率公式有P(X=1)===,故选D.√15678910111213142342.一批产品共50件,次品率为4%,从中任取10件,则抽得1件次品的概率是 ( )A.0.032 B.0.33C.0.016 D.0.16√1567891011121314234解析:由已知得,50件产品中次品的件数为50×4%=2,所以随机试验从50件产品中任取10件的样本空间中的样本点的个数为,随机事件抽得1件次品所包含的样本点的个数为,所以随机事件抽得1件次品的概率P==≈0.33.故选B.15678910111213143423.某冷饮店的冰激凌在一天中销量为200个,三种口味各自销量如表所示.从卖出的冰激凌中随机抽取10个,记其中草莓味的个数为X,则E(X)= ( )冰激凌口味 草莓味 巧克力味 原味销量/个 40 60 100A.5 B.3C.2 D.1√1567891011121314342解析:已知X表示抽取卖出的冰激凌中草莓味的个数,则X服从超几何分布,且N=200,M=40,n=10,所以E(X)===2.故选C.15678910111213143424.某学习小组共12人,其中有5名是“三好学生”,现从该小组中任选5人参加竞赛,用ξ表示这5人中“三好学生”的人数,则下列概率等于的是( )A.P(ξ =1) B.P(ξ≤1)C.P(ξ ≥1) D.P(ξ≤2)√1567891011121314342解析:由题意可得,P(ξ=0)=,P(ξ=1)=,∴P(ξ≤1)=P(ξ=0)+P(ξ=1)=.故选B.15678910111213143425.[多选]在一个袋中装有质地、大小均一样的6个黑球,4个白球,现从中任取4个小球,设取出的4个小球中白球的个数为X,则下列结论正确的是 ( )A.P(X=2)=B.随机变量X服从二项分布C.随机变量X服从超几何分布D.E(X)=√√√1567891011121314342解析:随机变量X的所有可能取值为0,1,2,3,4,P(X=k)=,k∈N,k≤4,因此随机变量X服从超几何分布,B错误,C正确;P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,P(X=4)==,A正确;E(X)=0×+1×+2×+3×+4×=,D正确.15678910111213143426.袋中装有5个红球和4个黑球,从袋中任取4个球,取到1个红球得3分,取到1个黑球得1分,设得分为随机变量X,则P(X≥8)=____. 解析:由题意知P(X≥8)=1-P(X=6)-P(X=4)=1--=.7.一口袋中有大小完全相同的黑球、白球共7个(白球不少于2个),从中任取2个球,已知取到白球个数的数学期望为,则口袋中白球的个数为_____. 解析:设口袋中有白球x个,取出的2个球中所含白球个数为ξ,则ξ服从超几何分布,由超几何分布的均值公式,得E(ξ)==,解得x=3.1567891011121314342315678910111213143428.已知口袋中装有n(n>1)个红球和2个黄球,从中任取2个球(取到每个球都是等可能的),用随机变量X表示取到黄球的个数,X的分布列如下表所示,则X的均值为______. X 0 1 2P a b11567891011121314342解析:由题意可得P(X=1)===,解得n=2或n=1(舍去),则a=P(X=0)==,b=P(X=2)==,即X的分布列为X 0 1 2P故X的均值E(X)=0×+1×+2×=1.15678910111213143429.一个袋中装有6个形状大小完全相同的小球,其中红球有3个,编号为1,2,3;黑球有2个,编号为1,2;白球有1个,编号为1.现从袋中依次随机抽取3个球.(1)求取出的3个球的颜色都不相同的概率;解:从袋中一次随机抽取3个球,样本点总数n==20,取出的3个球的颜色都不相同包含的样本点的个数为=6,所以取出的3个球的颜色都不相同的概率P==.1567891011121314342(2)记取得1号球的个数为随机变量X,求随机变量X的分布列.解:由题意知X=0,1,2,3.则P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.所以X的分布列为X 0 1 2 3P156789101112131434210.从5名男生和3名女生中任选3人参加奥数训练,设随机变量X表示所选3人中女生的人数.(1)求“所选3人中女生人数X>1”的概率;解:P(X>1)=P(X=2)+P(X=3)=+=+=.1567891011121314342(2)求X的分布列及均值.解:X的所有可能取值为0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)==,1567891011121314342P(X=3)==,所以X的分布列为X 0 1 2 3PE(X)=0×+1×+2×+3×==.1567891011121314342B级——应用创新11.已知在10件产品中可能存在次品,从中抽取2件检查,其中次品数为ξ,已知P(ξ=1)=,且该产品的次品率不超过40%,则这10件产品的次品率为( )A.10% B.20%C.30% D.40%√1567891011121314342解析:设10件产品中有x件次品,则P(ξ=1)===,所以x=2或x=8.因为次品率不超过40%,所以x=2,所以次品率为=20%.156789101112131434212.[多选]袋中有8个大小相同的球,其中5个黑球,3个白球,现从中任取3个球,记随机变量X为其中白球的个数,随机变量Y为其中黑球的个数,若取出一个白球得2分,取出一个黑球得1分,随机变量Z为取出3个球的总得分,则下列结论正确的是 ( )A.P(|Z-5|≤1)= B.E(X)C.D(X)=D(Y) D.E(Z)=√√√1567891011121314342解析:X,Y均服从超几何分布,且X+Y=3,Z=2X+Y=3+X,P(X=k)=,k=0,1,2,3,对选项A,P(|Z-5|≤1)=P(|X-2|≤1)=1-P(X=0)=1-=,错误;对选项B,E(X)=3×=,E(Y)=3-E(X)=,正确;对选项C,D(Y)=D(3-X)=D(X),正确;对选项D,E(Z)=3+E(X)=3+=,正确.故选BCD.156789101112131434213.袋中有4个红球,m个黄球,n个绿球.现从中任取两个球,记取出的红球数为ξ,若取出的两个球都是红球的概率为,一红一黄的概率为,则m-n=_____;E(ξ )= ____. 1 1567891011121314342解析:由题意可得,P(ξ=2)===,化简得(m+n)2+7(m+n)-60=0,得m+n=5(m+n=-12舍去).又取出的两个球为一红一黄的概率P===,解得m=3,故n=2.所以m-n=1.易知ξ的所有可能取值为0,1,2,且P(ξ=2)=,P(ξ =1)==,P(ξ =0)==,所以E(ξ)=0×+1×+2×=.156789101112131434214.某校设计了一个实验学科的实验考查方案,考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作,规定:至少正确完成其中2题便可通过.已知6道备选题中考生甲有4题能正确完成,2题不能完成;考生乙每题正确完成的概率都是,且每题正确完成与否互不影响.(1)分别写出甲、乙两考生正确完成题数的分布列,并计算均值;1567891011121314342解:设考生甲正确完成实验操作的题数为ξ,则ξ的可能取值为1,2,3,P(ξ =1)==,P(ξ =2)==,P(ξ=3)==,1567891011121314342所以ξ的分布列为ξ 1 2 3P则E(ξ)=1×+2×+3×=2.设考生乙正确完成实验操作的题数为η,易知η~B,1567891011121314342所以P(η=0)==,P(η=1)==,P(η=2)==,P(η=3)==.1567891011121314342所以η的分布列为η 0 1 2 3P所以E(η)=3×=2.1567891011121314342(2)试用统计知识分析比较两考生的实验操作能力.解:由(1),知E( ξ )=E(η)=2,D( ξ )=(1-2)2×+(2-2)2×+(3-2)2×=,D(η)=3××=,P(ξ≥2)=+=,P(η≥2)=+=.所以D(ξ)P(η≥2),1567891011121314342故从正确完成实验操作的题数的均值方面分析,两人水平相当;从正确完成实验操作的题数的方差方面分析,甲的水平更稳定;从至少正确完成2题的概率方面分析,甲通过的可能性更大.因此甲的实验操作能力较强.课时跟踪检测(二十) 超几何分布A级——综合提能1.设10件同类型的零件中有2件是不合格品,从其中任取3件,以X表示取出的3件中的不合格品的件数,则P(X=1)= ( )A. B.C. D.2.一批产品共50件,次品率为4%,从中任取10件,则抽得1件次品的概率是 ( )A.0.032 B.0.33C.0.016 D.0.163.某冷饮店的冰激凌在一天中销量为200个,三种口味各自销量如表所示.从卖出的冰激凌中随机抽取10个,记其中草莓味的个数为X,则E(X)= ( )冰激凌口味 草莓味 巧克力味 原味销量/个 40 60 100A.5 B.3C.2 D.14.某学习小组共12人,其中有5名是“三好学生”,现从该小组中任选5人参加竞赛,用ξ表示这5人中“三好学生”的人数,则下列概率等于的是 ( )A.P(ξ=1) B.P(ξ≤1)C.P(ξ≥1) D.P(ξ≤2)5.[多选]在一个袋中装有质地、大小均一样的6个黑球,4个白球,现从中任取4个小球,设取出的4个小球中白球的个数为X,则下列结论正确的是 ( )A.P(X=2)=B.随机变量X服从二项分布C.随机变量X服从超几何分布D.E(X)=6.袋中装有5个红球和4个黑球,从袋中任取4个球,取到1个红球得3分,取到1个黑球得1分,设得分为随机变量X,则P(X≥8)= . 7.一口袋中有大小完全相同的黑球、白球共7个(白球不少于2个),从中任取2个球,已知取到白球个数的数学期望为,则口袋中白球的个数为 . 8.已知口袋中装有n(n>1)个红球和2个黄球,从中任取2个球(取到每个球都是等可能的),用随机变量X表示取到黄球的个数,X的分布列如下表所示,则X的均值为 . X 0 1 2P a b9.一个袋中装有6个形状大小完全相同的小球,其中红球有3个,编号为1,2,3;黑球有2个,编号为1,2;白球有1个,编号为1.现从袋中依次随机抽取3个球.(1)求取出的3个球的颜色都不相同的概率;(2)记取得1号球的个数为随机变量X,求随机变量X的分布列.10.从5名男生和3名女生中任选3人参加奥数训练,设随机变量X表示所选3人中女生的人数.(1)求“所选3人中女生人数X>1”的概率;(2)求X的分布列及均值.B级——应用创新11.已知在10件产品中可能存在次品,从中抽取2件检查,其中次品数为ξ,已知P(ξ=1)=,且该产品的次品率不超过40%,则这10件产品的次品率为 ( )A.10% B.20%C.30% D.40%12.[多选]袋中有8个大小相同的球,其中5个黑球,3个白球,现从中任取3个球,记随机变量X为其中白球的个数,随机变量Y为其中黑球的个数,若取出一个白球得2分,取出一个黑球得1分,随机变量Z为取出3个球的总得分,则下列结论正确的是 ( )A.P(|Z-5|≤1)= B.E(X)C.D(X)=D(Y) D.E(Z)=13.袋中有4个红球,m个黄球,n个绿球.现从中任取两个球,记取出的红球数为ξ,若取出的两个球都是红球的概率为,一红一黄的概率为,则m-n= ;E(ξ)= . 14.某校设计了一个实验学科的实验考查方案,考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作,规定:至少正确完成其中2题便可通过.已知6道备选题中考生甲有4题能正确完成,2题不能完成;考生乙每题正确完成的概率都是,且每题正确完成与否互不影响.(1)分别写出甲、乙两考生正确完成题数的分布列,并计算均值;(2)试用统计知识分析比较两考生的实验操作能力.课时跟踪检测(二十)1.选D 根据超几何分布的概率公式有P(X=1)===,故选D.2.选B 由已知得,50件产品中次品的件数为50×4%=2,所以随机试验从50件产品中任取10件的样本空间中的样本点的个数为,随机事件抽得1件次品所包含的样本点的个数为,所以随机事件抽得1件次品的概率P==≈0.33.故选B.3.选C 已知X表示抽取卖出的冰激凌中草莓味的个数,则X服从超几何分布,且N=200,M=40,n=10,所以E(X)===2.故选C.4.选B 由题意可得,P(ξ=0)=,P(ξ=1)=,∴P(ξ≤1)=P(ξ=0)+P(ξ=1)=.故选B.5.选ACD 随机变量X的所有可能取值为0,1,2,3,4,P(X=k)=,k∈N,k≤4,因此随机变量X服从超几何分布,B错误,C正确;P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,P(X=4)==,A正确;E(X)=0×+1×+2×+3×+4×=,D正确.6.解析:由题意知P(X≥8)=1-P(X=6)-P(X=4)=1--=.答案:7.解析:设口袋中有白球x个,取出的2个球中所含白球个数为ξ,则ξ服从超几何分布,由超几何分布的均值公式,得E(ξ)==,解得x=3.答案:38.解析:由题意可得P(X=1)===,解得n=2或n=1(舍去),则a=P(X=0)==,b=P(X=2)==,即X的分布列为X 0 1 2P故X的均值E(X)=0×+1×+2×=1.答案:19.解:(1)从袋中一次随机抽取3个球,样本点总数n==20,取出的3个球的颜色都不相同包含的样本点的个数为=6,所以取出的3个球的颜色都不相同的概率P==.(2)由题意知X=0,1,2,3.则P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.所以X的分布列为X 0 1 2 3P10.解:(1)P(X>1)=P(X=2)+P(X=3)=+=+=.(2)X的所有可能取值为0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,所以X的分布列为X 0 1 2 3PE(X)=0×+1×+2×+3×==.11.选B 设10件产品中有x件次品,则P(ξ=1)===,所以x=2或x=8.因为次品率不超过40%,所以x=2,所以次品率为=20%.12.选BCD X,Y均服从超几何分布,且X+Y=3,Z=2X+Y=3+X,P(X=k)=,k=0,1,2,3,对选项A,P(|Z-5|≤1)=P(|X-2|≤1)=1-P(X=0)=1-=,错误;对选项B,E(X)=3×=,E(Y)=3-E(X)=,正确;对选项C,D(Y)=D(3-X)=D(X),正确;对选项D,E(Z)=3+E(X)=3+=,正确.故选BCD.13.解析:由题意可得,P(ξ=2)===,化简得(m+n)2+7(m+n)-60=0,得m+n=5(m+n=-12舍去).又取出的两个球为一红一黄的概率P===,解得m=3,故n=2.所以m-n=1.易知ξ的所有可能取值为0,1,2,且P(ξ=2)=,P(ξ=1)==,P(ξ=0)==,所以E(ξ)=0×+1×+2×=.答案:1 14.解:(1)设考生甲正确完成实验操作的题数为ξ,则ξ的可能取值为1,2,3,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,所以ξ的分布列为ξ 1 2 3P则E(ξ)=1×+2×+3×=2.设考生乙正确完成实验操作的题数为η,易知η~B,所以P(η=0)==,P(η=1)==,P(η=2)==,P(η=3)==.所以η的分布列为η 0 1 2 3P所以E(η)=3×=2.(2)由(1),知E(ξ)=E(η)=2,D(ξ)=(1-2)2×+(2-2)2×+(3-2)2×=,D(η)=3××=,P(ξ≥2)=+=,P(η≥2)=+=.所以D(ξ)P(η≥2),故从正确完成实验操作的题数的均值方面分析,两人水平相当;从正确完成实验操作的题数的方差方面分析,甲的水平更稳定;从至少正确完成2题的概率方面分析,甲通过的可能性更大.因此甲的实验操作能力较强.3 / 3 展开更多...... 收起↑ 资源列表 7.4.2 超几何分布.docx 7.4.2 超几何分布.pptx 课时跟踪检测(二十) 超几何分布.docx